
Stochastic Subgraph Neighborhood Pooling for Subgraph
Classification

Shweta Ann Jacob

shweta.jacob@ontariotechu.net

Ontario Tech University

Paul Louis

paul.louis@ontariotechu.net

Ontario Tech University

Amirali Salehi-Abari

abari@ontariotechu.ca

Ontario Tech University

ABSTRACT
Subgraph classification is an emerging field in graph representa-

tion learning where the task is to classify a group of nodes (i.e., a

subgraph) within a graph (e.g., identifying rare diseases given a col-

lection of phenotypes). Graph neural network (GNN) solutions for

node, link, and graph tasks fail to perform well on subgraph classifi-

cation as they do not capture the external topology of the subgraph

(i.e., how the subgraph is located within the larger graph). The

current state-of-the-art models address this shortcoming through

either labeling tricks or multiple message-passing channels, which

are computationally expensive and not scalable to large graphs. To

address the scalability issue while maintaining generalization, we

propose Stochastic Subgraph Neighborhood Pooling (SSNP), which
jointly aggregates the subgraph and its neighborhood (i.e., external

topology) information while removing the need for any computa-

tionally expensive operations (e.g. labeling tricks). Our extensive

experiments demonstrate that SSNP outperforms or is comparable

to state-of-the-art methods while being up to 13× faster in runtime.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Graph Neural Networks, Subgraph Classification.

ACM Reference Format:
Shweta Ann Jacob, Paul Louis, and Amirali Salehi-Abari. 2023. Stochastic

Subgraph Neighborhood Pooling for Subgraph Classification. In Proceedings
of the 32nd ACM International Conference on Information and Knowledge
Management (CIKM ’23), October 21–25, 2023, Birmingham, United Kingdom.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3583780.3615227

1 INTRODUCTION
Graph-structured data is prevalent in many domains such as so-

cial networks [1], recommender systems [21], and drug discovery

[9]. Graph representation learning has continuously progressed

in recent years with the advent of more expressive graph neural

networks (GNNs) [7, 11, 17, 19]. Subgraph classification is an emerg-

ing problem in GRL where one intends to predict the properties

associated with a group of nodes (i.e., a subgraph) of the larger

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00

https://doi.org/10.1145/3583780.3615227

observed base graph [3, 18]. Subgraph classification finds applica-

tion in various domains such as finding toxic (or violence-inciting)

communities in social networks, group recommendation, drug dis-

covery, diagnosis of rare diseases, etc. As subgraphs may contain

any number of nodes ranging from one node to all nodes of the

base graph, typical downstream tasks (e.g., node classification, link

prediction, or graph classification) can be considered as specific

instances of subgraph classification.

Subgraph classification requires solutions that can learn, com-

bine, and contrast topological properties and the connectivity be-

tween the nodes within and outside the subgraph. Learning these

complex intra-connectivity and inter-connectivity patterns of the

subgraph and the base graph renders this problem challenging. The

direct application of traditional GNNs is an inferior solution as they

ignore the external topology of the subgraph [18]. Recent state-

of-the-art work (e.g., GLASS [18] and SubGNN [3]) alleviates this

shortcoming of the lack of external topology information through

the use of labeling tricks [18] or artificially-crafted message passing

channels [3], which are computationally intensive, especially when

dealing with larger (sub)graphs.

We introduce a computationally-light model for subgraph classi-

fication that operates on the original graph while capturing external

topologies of subgraphs. The crux of our solution is Stochastic Sub-
graph Neighborhood Pooling (SSNP), which aggregates the node

representations of the subgraph and its neighborhood to generate

the topologically-rich subgraph embeddings. The addition of sub-

graph neighborhood information in SSNP facilitates capturing the

external topology of a subgraph within a base graph. To prevent

neighborhood explosion in large graphs, our SSNP uses random

walks to sample the neighborhood of subgraphs. For a higher ex-

tent of scalability, our sampling method can be conducted multiple

times in a pre-processing stage as a data augmentation strategy, to

create multiple sparse views of the subgraph neighborhood. Our

comprehensive experiments on real-world datasets show that our

solution offers a runtime speedup up to 13× while matching or

outperforming various state-of-the-art baselines.

2 BACKGROUND AND RELATEDWORK
Let 𝐺 = (𝑉 , 𝐸) represent a simple, undirected graph where 𝑉 =

{1, . . . , 𝑛} is the set of nodes (e.g., users, proteins, etc.), and 𝐸 ⊆ 𝑉×𝑉
represents the edge set (e.g., friendships, interactions, etc.). We

sometimes represent𝐺 by the adjacency matrix A ∈ R𝑛×𝑛 where

𝑎𝑖 𝑗 = 1 if an edge exists between nodes 𝑖 and 𝑗 , and 0 otherwise. We

also assume each node 𝑖 ∈ 𝑉 possesses a 𝑑-dimensional feature x𝑖 ∈
R𝑑 (e.g., user information, protein characteristics). We sometimes

stack all nodal features, row-by-row in the feature matrix X whose

𝑖-th row contains x𝑖 . We consider a subgraph 𝑆 = (𝑉𝑆 , 𝐸𝑆) in base

graph 𝐺 where 𝑉𝑆 ⊆ 𝑉 and 𝐸𝑆 ⊆ (𝑉𝑆 ×𝑉𝑆) ∩ 𝐸.

https://doi.org/10.1145/3583780.3615227
https://doi.org/10.1145/3583780.3615227

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Shweta Ann Jacob, Paul Louis, & Amirali Salehi-Abari

a

b

c

d

e

f

g

h

j

i

a

b

c

d

e

f

g

h

j

i

C
la
ss

P
ro
b
a
b
il
it
ie
s

M
L
P

a

b

c

d

e

f

g

h

j

pools

pooln

Stochastic Subgraph Neighborhood Pooling

qs

T
ra
n
sf
o
rm

i

Figure 1: Architecture of our model. Subgraph nodes are shaded in purple. The initial node features are transformed using
transformation layers. The stochastic subgraph neighborhood pooling poolSSNP is applied in multiple steps. The subgraph
neighborhood nodes (shaded in brown) are sampled by rooted random walks (red dashed arrows). The subgraph and its sampled
neighborhood are separately pooled by 𝑝𝑜𝑜𝑙𝑠 and 𝑝𝑜𝑜𝑙𝑛 , which are simple graph pooling operators (e.g., mean, sum, etc.). The
pooling outputs are concatenated to form the subgraph representation q𝑠 and is passed to an MLP to generate class probabilities.

Subgraph Classification Problem. The goal is to learn a mapping

function 𝑓 (𝐺,X, 𝑆) which takes the base graph 𝐺 , its node feature

matrix X, and a subgraph 𝑆 as an input, and outputs the subgraph

class label 𝑦 ∈ {1, . . . ,𝐶}, where 𝐶 is the number of classes.

Related Work SubGNN [3], an early work on subgraph classifica-

tion, samples anchor patches from the base graph and propagates

messages between anchors to the subgraph in multiple channels to

learn the internal and external topologies of subgraphs. The current

state-of-the-art GLASS [18] uses the zero-one (or its variant max

zero-one) labeling trick [24] to differentiate between the internal

and external nodes of a subgraph and thereby encode various topo-

logical properties of the subgraph. Sub2Vec [2], deployed for com-

munity detection and graph classification, is also adopted for the

subgraph classification task. PADEL [12] uses data augmentation

and contrastive learning techniques along with position encodings

of nodes during message passing. These methods are either fast

but suboptimal (e.g., Sub2Vec [2]) or effective but computationally-

expensive (e.g., SubGNN and GLASS). Our work offers a fast yet

effective solution for subgraph classification.

3 PROPOSED SOLUTION
The steps of our proposed solution are depicted in Figure 1. The

initial node features X are transformed to learned embeddings

Z = 𝑓𝑇 (𝐺,X). The transformation function 𝑓𝑇 can be multi-layers

of graph convolutions for feature smoothing or a simple multi-

layer perceptron for dimensionality reduction. After obtaining node

embeddings Z, our proposed poolSSNP function is used to aggregate

the target subgraph’s internal and external topological properties

into a subgraph representation:

q𝑠 = poolSSNP (Z,𝐺, 𝑆) (1)

This subgraph representation q𝑠 is fed to an MLP to output class

probabilities for the subgraph classification task. The MLP also

learns how to mix the pooled subgraph and its neighborhood repre-

sentations. Our proposed solution does not require computationally-

expensive labeling tricks (as opposed to GLASS [18]), or artificially-

crafted message passing channels (as opposed to SubGNN [3]).

Subgraph Neighborhood Pooling and Variants. Our proposed
pooling is built on the idea that the representations of subgraphs

and their neighborhoods are both important for capturing the inter-

nal and external topology of subgraphs. We first define the ℎ-hop

subgraph neighborhood as:

Definition 1 (ℎ-hop Subgraph Neighborhood). Given the
base graph 𝐺 = (𝑉 , 𝐸) and its subgraph 𝑆 = (𝑉𝑆 , 𝐸𝑆), the ℎ-hop
subgraph neighborhood 𝑁

(ℎ)
𝑆

is the induced subgraph created from
the node set { 𝑗 ∈ 𝑉𝑁 |𝑚𝑖𝑛𝑖∈𝑆𝑑 (𝑖, 𝑗) ≤ ℎ}, where 𝑑 (𝑖, 𝑗) is the geodesic
distance between node 𝑖 and 𝑗 , and 𝑉𝑁 = 𝑉 \𝑉𝑆 are nodes of 𝐺 that
do not belong to 𝑆 .

In simple words, the ℎ-hop subgraph neighborhood is the sub-

graph of𝐺 whose nodes do not belong to 𝑆 and are within a distance

of ℎ to at least one of the nodes of 𝑆 . Our ℎ-hop subgraph neigh-

borhood can be viewed as an extension of the enclosing subgraphs

for pair of nodes [22] but with two distinctions: (i) the ℎ-hop neigh-

borhood is defined for any subgraph size (rather than just a pair of

nodes) and (ii) the subgraph 𝑆 is excluded from its neighborhood

subgraph. Given this ℎ-hop subgraph neighborhood definition, we

first consider a simple subgraph neighborhood pooling:

poolSNP (Z,𝐺, 𝑆, ℎ) = pool𝑠 (Z𝑆 , 𝑆) ⊕ pool𝑛

(
Z𝑁 , 𝑁

(ℎ)
𝑆

)
, (2)

where Z𝑆 and Z𝑁 denote the matrix node embeddings of the sub-

graph 𝑆 and its neighborhood 𝑁
(ℎ)
𝑆

. Here, ⊕ is the concatenation

operator, and 𝑝𝑜𝑜𝑙𝑠 and 𝑝𝑜𝑜𝑙𝑛 can be any order invariant graph

pooling function (e.g., sum, mean, max, or SortPooling [23]). The

main idea here is to treat the subgraph and its neighborhood as two

separate graphs, pool their information, and then concatenate their

representations to capture the topology of the subgraph. Current

subgraph representation learning models (e.g., GLASS, SubGNN)

only use 𝑝𝑜𝑜𝑙𝑠 , while ignoring the rich information of the neigh-

borhood subgraph. However, consuming the complete subgraph

neighborhoods is problematic as these neighborhoods can become

extremely large with many uninformative and noisy nodes, thus

hindering the model’s learning and slowing down the running time.

To overcome this limitation, we define:

Definition 2 (ℎ-hop Sparsified Subgraph Neighborhood).

Given the base graph𝐺 = (𝑉 , 𝐸) and subgraph 𝑆 = (𝑉𝑆 , 𝐸𝑆), we define
a ℎ-hop sparsified subgraph neighborhood 𝑁̂

(ℎ,𝑘)
𝑆

, as the subgraph

induced from the nodes in 𝑉 (ℎ,𝑘)
𝑆

∈ {𝑊 (ℎ,𝑘)
𝑆

\𝑉𝑆 }, where𝑊 (ℎ,𝑘)
𝑆

is
a set of nodes visited by 𝑘 many ℎ-length random-walk(s) from the
nodes in 𝑉𝑆 .

Compared to the exact subgraph neighborhood, the sparse neigh-

borhoods are bounded by ℎ𝑘 (i.e., the product of the length and

Stochastic Subgraph Neighborhood Pooling for Subgraph Classification CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 1: Statistics of all real-world datasets.

nodes # edges # Subgraphs # Classes Multi-label

ppi-bp 17080 316951 1591 6 No

hpo-metab 14587 3238174 2400 6 No

hpo-neuro 14587 3238174 4000 10 Yes

em-user 57333 4573417 324 2 No

number of random walks). The rooted random walks allow sam-

pling “important" external nodes to a subgraph (similar to rooted

PageRank [4]), which encapsulates information on the border neigh-

borhood. The randomness in the neighborhood subgraph also adds

some regularization effect to the training of the model (similar to

what was observed in ScaLed [13]). Given the computational and

learning advantages of sparsified neighborhood subgraphs, we in-

troduce stochastic subgraph neighborhood pooling (SSNP) by a slight

modification of Eq. 2:

poolSSNP (Z,𝐺, 𝑆, ℎ, 𝑘) = pool𝑠 (Z𝑆 , 𝑆) ⊕ pool𝑛

(
Z
𝑁̂
, 𝑁̂

(ℎ,𝑘)
𝑆

)
, (3)

where Z𝑆 and Z
𝑁̂

denote the matrix node embeddings of the sub-

graph 𝑆 and its sparsified neighborhood 𝑁̂
(ℎ,𝑘)
𝑆

by 𝑘-many ℎ-length

random walks. In the absence of distinguishing node features, our

model with poolSSNP is potentially more expressive than a plain

GNN (which only pools subgraph without its neighbors).

Random walks are effective in approximating and sparsifying

subgraphs around a node [13, 20]. However, the sampling of the

sparsified subgraph neighborhood in each training epoch might

introduce undesirable instability and stochasticity in gradient com-

putations and optimization procedures. To address this instability

and reduce the sampling overhead, we introduce three different

stochastic subgraph neighborhood sampling strategies.

Online Stochastic Views (OV): The ℎ-hop sparsified subgraph

neighborhood is sampled in each epoch. This stochasticity over

training intends to add regularization to the model but might have

undesirable outcomes of gradient instability. Also, the epoch-level

sampling adds computational overhead to the training.

Pre-processed Stochastic Views (PV): To overcome the addi-

tional overhead created by sampling during training, we propose

pre-processed stochastic views (PV) for which a fixed number 𝑛𝑣 of

sparsified subgraph neighborhood is sampled for each subgraph

during preprocessing. These sampled neighborhood subgraphs can

be viewed as data augmentation that provides 𝑛𝑣 views of the sub-

graph neighborhood. Similar to other data augmentation strategies,

PV improves the generalization of our model and makes it more ro-

bust to noise and overfitting. However, the dataset size and training

time grows linearly with the number of views 𝑛𝑣 .

Pre-processed Online Stochastic Views (POV): To reduce the

training time on the augmented datasets, we propose pre-processed
online stochastic views (POV) that leverages both the pre-processed

and online subgraph neighborhood sampling method. In the pre-

processing stage similar to PV, POV creates 𝑛𝑣 multiple sparsified

subgraph neighborhoods for each subgraph. But, during each train-

ing epoch, for each subgraph only𝑛𝑣𝑒 of the precomputed views are

randomly sampled. POV allows data augmentation with multiple

views while keeping the number of training instances per epoch

independent of the number of views 𝑛𝑣 .

Table 2: The micro-F1 scores (average of 10 runs) for all mod-
els. The top 3 are First, Second, and Third.

Model ppi-bp hpo-metab hpo-neuro em-user

MLP 0.445±0.003 0.386±0.011 0.404±0.006 0.524±0.019
GBDT 0.446±0.000 0.404±0.000 0.513±0.000 0.694±0.000
GNN-plain 0.613±0.009 0.597±0.012 0.668±0.007 0.847±0.021
Sub2Vec 0.388±0.001 0.472±0.010 0.618±0.003 0.779±0.013
GNN-seg 0.361±0.008 0.542±0.009 0.647±0.001 0.725±0.003
SubGNN 0.599±0.008 0.537±0.008 0.644±0.006 0.816±0.013
GLASS 0.618±0.006 0.598±0.014 0.675±0.007 0.884±0.008
SSNP-MLP 0.591±0.006 0.571±0.006 0.669±0.004 0.853±0.012
SSNP-GCN 0.607±0.005 0.553±0.011 0.667±0.003 0.843±0.014
SSNP-NN 0.636±0.007 0.587±0.010 0.682±0.004 0.888±0.005

Table 3: Our model vs GLASS: dataset preprocessing time,
training and inference time per epoch and average runtime
in seconds (mean over 10 runs). The min/max speedup is the
ratio of time taken byGLASS to the time of the slowest/fastest
SSNP model (in italics/bold).

ppi-bp

Model Preproc. Training Inference Runtime

SSNP-NN 8.94±0.54 0.38±0.02 0.02±0.00 129.35±3.27
SSNP-GCN 8.89±0.71 0.42±0.02 0.03±0.00 142.38±3.85
SSNP-MLP 8.79±0.63 0.06±0.02 0.00±0.00 16.00±0.94
GLASS 3.93±0.10 0.78±0.02 0.05±0.00 207.99±24.76
Speedup 0.44/0.45 1.86/13 1.67/25 1.46/13

hpo-metab

Model Preproc. Training Inference Runtime

SSNP-NN 25.20±0.84 0.73±0.02 0.05±0.001 159.56±18.86
SSNP-GCN 26.13±1.53 0.94±0.03 0.06±0.00 209.20±43.15
SSNP-MLP 24.81±0.75 0.10±0.02 0.00±0.00 35.00±1.72
GLASS 15.99±0.88 2.15±0.03 0.13±0.00 239.48±33.22
Speedup 0.61/0.64 2.29/21.5 2.17/43.33 1.14/6.84

hpo-neuro

Model Preproc. Training Inference Runtime

SSNP-NN 29.67±1.54 1.27±0.03 0.05±0.00 202.28±26.01
SSNP-GCN 28.14±0.81 1.58±0.05 0.06±0.00 344.14±44.14
SSNP-MLP 28.37±1.13 0.21±0.01 0.01±0.00 50.00±1.05
GLASS 16.56±0.84 4.20±0.04 0.25±0.00 511.54±94.40
Speedup 0.56/0.59 2.66/20 4.17/25 1.49/10.23

em-user

Model Preproc. Training Inference Runtime

SSNP-NN 27.93±1.41 3.00±0.04 0.08±0.00 156.81±32.10
SSNP-GCN 27.62±0.91 1.61±0.04 0.08±0.00 108.30±18.62
SSNP-MLP 27.52±1.54 0.16±0.01 0.00±0.00 44.00±1.71
GLASS 25.11±1.61 4.93±0.04 0.56±0.00 212.28±23.51
Speedup 0.90/0.91 1.64/30.81 7/140 1.35/4.82

4 EXPERIMENTS
We compare our solutions against different baselines on four real-

world datasets to evaluate their performance and scalability.
1

Datasets. We perform experiments on four publicly-available real-

world datasets that have been the subject of other studies [3, 18] (see

1
More experimental results are available in the longer version of this paper [8].

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Shweta Ann Jacob, Paul Louis, & Amirali Salehi-Abari

Table 1). We follow the same dataset split as GLASS [18]: 80/10/10

for train, validation, and test splits.

Baselines. Our baselines include the state-of-the-art GLASS [18],
SubGNN [3], graph-agnostic MLP, GBDT [6], GNN-plain, Sub2Vec

[2], and GNN-seg [18]. The baseline results, except for GLASS, are

taken from [18]. We rerun GLASS to capture the runtime values and

verify that our setup is identical to their setup of reported results.

Setup. For GLASS, we use its best-performing reported hyper-

parameters. For our model, we set the transformation functions

to either MLP, Nested Network (NN) [15], or Graph Convolution

Network (GCN) [11], and the correspondingmodels are called SSNP-
MLP, SSNP-NN and SSNP-GCN, respectively. We always set the

number of walks per node 𝑘 = 1, and let the pooling method for the

subgraph and neighborhood be the same (i.e., pool𝑠 = pool𝑛). Un-

less noted otherwise, we use the POV for creating subgraph neigh-

borhood views with the number of views𝑛𝑣 = 20 and the number of

views per epoch 𝑛𝑣𝑒 = 5. The other hyperparameters are searched

over validation datasets to maximize micro-F1 scores. The search

spaces are pool𝑠 ∈ {𝑠𝑢𝑚, 𝑠𝑖𝑧𝑒}, length of walks ℎ ∈ {1, 5}, and the

number of transformation layers ∈ {1, 2, 3}. As with GLASS, we set

the learning rate to 0.0005 for ppi-bp, 0.002 for hpo-neuro and 0.001

for hpo-metab and em-user, and use pre-trained 64-dimensional

nodal features as the initial node features. We use Adam optimizer

[10] paired with ReduceLROnPlateau learning rate scheduler. We

set dropout [16] to 0.5 for all models. We use a single-layer MLP

to output the class probabilities and the cross-entropy loss in our

model. Our model is implemented in PyTorch Geometric [5] and

PyTorch [14].
2
Our results are reported with an average F1-score

over 10 runs with different random seeds.

Results: F1-Score. Table 2 shows the mean micro-F1 results for all

datasets. On ppi-bp, hpo-neuro, and em-user, our SSNP-NN model

outperforms all others with a gain of 0.018, 0.011, and 0.004, respec-

tively. For hpo-metab, SSNP-NN ranks third with a small margin of

0.011 compared to GLASS ranked first. This relatively low perfor-

mance could be attributed to the fact that subgraphs in hpo-metab

are dense and therefore, do not need external topological infor-

mation. Surprisingly, both SSNP-NN and SSNP-GCN outperform

SubGNN across all the datasets. SSNP-MLP (even without message

passing) outperforms SubGNN in all datasets except for ppi-bp

for which it has a comparable result. SSNP-MLP also appears to

be relatively competitive by being ranked third in hpo-neuro and

em-user as well as surpassing MLP by a significant margin. These

results provide strong evidence in demonstrating how effective

neighborhood pooling is for subgraph classification.

Results: Runtime. The average runtimes are reported in Table

3.
3
Our models for all datasets require at most twice the prepro-

cessing times of GLASS due to the sampling of multiple subgraph

neighborhood views. However, in return, the training and inference

times are 1.5-137× faster depending on the model variations and

datasets. Our best-performing SSNP-NN has a training speedup of

1.5-3.3× (min. for em-user andmax. for hpo-neuro) and an inference

speedup of 2.5-7× (min. for ppi-bp and max. for em-user). SSNP-
MLP is the fastest with maximum training and inference (resp.)

2
Our code is available at https://github.com/shweta-jacob/SSNP. We run our experi-

ments on servers with 50 CPUs, 377GB RAM, and 11GB GPUs.

3
SubGNN with suboptimal runtime compared to GLASS [18], is excluded.

Table 4: F1-score (avg. over 5 runs), various sampling strate-
gies, SSNP-NN.

Strategy ppi-bp hpo-metab hpo-neuro em-user

OV 0.527±0.008 0.443±0.055 0.681±0.002 0.906±0.009
PV (5 views) 0.628±0.007 0.569±0.015 0.680±0.003 0.878±0.015
PV (20 views) 0.635±0.003 0.553±0.013 0.671±0.003 0.902±0.007
POV 0.638±0.008 0.577±0.017 0.686±0.004 0.902±0.007

ppi-bp hpo-metab hpo-neuro em-user0

5

10

15

20

25

30

35

40

Pr
ep

ro
ce

ss
in

g
Ti

m
e

(s
)

OV
PV (5 views)

PV (20 views)
POV

ppi-bp hpo-metab hpo-neuro em-user0

2

4

6

8

10

12

14

Tr
ai

ni
ng

 T
im

e
(s

)

OV
PV (5 views)

PV (20 views)
POV

Figure 2: The effect of sampling strategies on pre-processing
time (left) and training time per epoch (right) in SSNP-NN.

speedups of 30× and 140× (resp.) in em-user. Cross-examining Ta-

bles 2 and 3, we observe that SSNP-MLP vs. GLASS has a speedup

of 13-140× (for both training and inference) with a small negative

gain of 0.006–0.031 in F1-score and a runtime speedup of 4.8-13×
(min. for em-user and max. for ppi-bp).

Results: Stochastic Sampling Strategies.We intend to study the

effect of various stochastic sampling strategies (i.e., OV, PV, and

POV) on both F1-score and runtime. For these experiments, we set

the number of views per epoch 𝑛𝑣 to 1 for OV, to 5 or 20 for PV,

and to 20 for POV. For POV, we set the number of views per epoch

𝑛𝑣𝑒 = 5. For all datasets (except em-user), POV provides the best F1-

scores (see Table 4). For em-user, OV suppresses POV with a small

margin of 0.004. The training time for OV in ppi-bp, hpo-metab

and hpo-neuro is higher than PV with 5 views and POV (see Figure

2). However, pre-processing of OV is faster than all other sampling

strategies. Although the pre-processing times are comparable for

PVs and POV, POV offers much faster training time and a higher F1-

score (see Table 4). In hpo-metab and hpo-neuro, the F1 score of PV

with 5 views is higher than that of PVwith 20 views, implying that a

higher number of views does not necessarily improve performance

for PV. However, POV, with 5 views per epoch and a total of 20

views, has the highest F1 score meaning the stochasticity across

epochs improves generalization for our model.

5 CONCLUSIONS AND FUTUREWORK
The state-of-the-art subgraph classification solutions are not scal-

able due to the use of labeling tricks or artificial message-passing

channels. We propose a simple yet powerful model that has our

proposed stochastic subgraph neighborhood pooling (SSNP) in its

core. Leveraging SSNP , our model learns the internal connectivity

and border neighborhood of subgraphs. We also present simple data

augmentation techniques that help to improve the generalization of

our model. Our model combined with our augmentation techniques

outperforms or match current state-of-the-art subgraph classifica-

tion models with a runtime speedup of up to 13×. For future work,
we plan to explore alternative ways to approximate neighborhood

subgraphs and perform contrastive learning on the different views

of neighborhood subgraphs.

https://github.com/shweta-jacob/SSNP

Stochastic Subgraph Neighborhood Pooling for Subgraph Classification CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

REFERENCES
[1] Lada A Adamic and Eytan Adar. 2003. Friends and Neighbors on the Web. Social

Networks (2003), 211–230.
[2] Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. 2018.

Sub2vec: Feature learning for subgraphs. In Advances in Knowledge Discovery
and Data Mining: 22nd Pacific-Asia Conference. Springer, 170–182.

[3] Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. 2020. Sub-

graph Neural Networks. Advances in Neural Information Processing Systems
(2020), 8017–8029.

[4] Sergey Brin and Lawrence Page. 2012. Reprint of: The anatomy of a large-scale

hypertextual web search engine. Computer Networks (2012), 3825–3833.
[5] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[6] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting

machine. Annals of statistics (2001), 1189–1232.
[7] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[8] Shweta Ann Jacob, Paul Louis, and Amirali Salehi-Abari. 2023. Stochastic

Subgraph Neighborhood Pooling for Subgraph Classification. arXiv preprint
arXiv:2304.08556 (2023).

[9] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe

Wang, Chao Shen, Dongsheng Cao, Jian Wu, and Tingjun Hou. 2021. Could

graph neural networks learn better molecular representation for drug discovery?

A comparison study of descriptor-based and graph-based models. Journal of
cheminformatics (2021), 1–23.

[10] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In International Conference on Learning Representations.
[11] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[12] Chang Liu, Yuwen Yang, Zhe Xie, Hongtao Lu, and Yue Ding. 2023. Position-

Aware Subgraph Neural Networks with Data-Efficient Learning. In Proceedings
of the Sixteenth ACM International Conference on Web Search and Data Mining.
643–651.

[13] Paul Louis, Shweta Ann Jacob, and Amirali Salehi-Abari. 2022. Sampling Enclos-

ing Subgraphs for Link Prediction. In Proceedings of the 31st ACM International

Conference on Information & Knowledge Management. 4269–4273.
[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library. In Advances in Neural Information Processing Systems. Article 721,
12 pages.

[15] Xiang Song, Runjie Ma, Jiahang Li, Muhan Zhang, and David Paul Wipf. 2021.

Network in graph neural network. arXiv preprint arXiv:2111.11638 (2021).
[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. The journal of machine learning research (2014), 1929–1958.

[17] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[18] Xiyuan Wang and Muhan Zhang. 2021. GLASS: GNN with Labeling Tricks

for Subgraph Representation Learning. In International Conference on Learning
Representations.

[19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[20] Haoteng Yin, Muhan Zhang, Yanbang Wang, Jianguo Wang, and Pan Li. 2022.

Algorithm and System Co-design for Efficient Subgraph-based Graph Represen-

tation Learning. arXiv preprint arXiv:2202.13538 (2022).
[21] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,

and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[22] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural Net-

works. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems. 5171–5181.

[23] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An End-

to-End Deep Learning Architecture for Graph Classification. Proceedings of the
AAAI Conference on Artificial Intelligence (2018).

[24] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2021. Labeling

Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation

Learning. In Advances in Neural Information Processing Systems. 9061–9073.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Proposed Solution
	4 Experiments
	5 Conclusions and Future Work
	References

