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Social choice theory provides a principled framework for the aggregation of individ-
uals’ preferences in support of group decision-making and recommendation.Much of
this work, however, either assumes that individuals’ subjective preferences (and thus,
their votes) are correctly specified by the individuals themselves, or alternatively that
the votes of individuals are noisy estimates of some underlying ground truth over
rankings of alternatives. We argue that neither model appropriately addresses some
of the issues which arise in the context of group-recommendation domains where
individuals have subjective preferences but for some reason (e.g., the high cogni-
tive burden, concerns about privacy, etc.) may instead vote using a noisy estimate of
their subjective preference rankings. In this paper, we propose a general probabilistic
framework for modeling noisy subjective preferences, and explore the accuracy and
reliability of four well-studied voting rules under various noise models. Our results
demonstrate that there is no single reliable method amongst the examined methods.
Specifically, we observe the change in noise distribution can flip one method from
being the most reliable to the least.
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1 INTRODUCTION

Group decision problems involve making decisions for a group of individuals who have their own personal and possibly conflict-
ing preferences. Group decision problems are prevalent (e.g., decisions for social groups, business organizations, public policies,
etc.). To assist group decision making, group recommender systems are developed in various domains such as tourism1, crowd-
funding2, music3, news/web pages4, TV programs5, and movies6. These group recommender system require understanding
user preferences (through preference learning or elicitation) in order to effectively recommend an option to a group of users.
Individual subjective preferences (in the form of ratings, rankings over alternatives, etc.) are constantly elicited or learnt

whether in the context of high-stakes political elections, when making dinner decisions amongst friends, or when being asked
to rate/rank movies in order to improve suggestions made by recommender systems. Though individual preferences can be
represented in various forms7, preferences are usually given by rankings in much of social choice theory which provides prin-
cipled frameworks for aggregating individuals’ preferences in support of group-decision making and recommendations8,9. This
is because preference rankings help circumvent, to some extent, the problem of interpersonal comparisons of utilities10.
In this context, we initiate a study of uncertainty with respect to subjective preference rankings, with a particular focus on

how noise in revealed subjective preferences influences different voting rules (or aggregation rules) from the social choice liter-
ature. Noisy reporting of subjective preferences has long been documented in recommender-system research11,12,13. Individuals
may reveal preference rankings which differ from their true underlying preferences for numerous reasons, and thus revealed
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preferences may sometimes be viewed as noisy samples of true underlying preferences. For example, high cognitive cost or
simple inexperience across all alternatives, may result in an individual being incapable of accurately specifying a total ranking
over alternatives when queried. Individuals may also simply make mistakes when reporting their preference rankings (e.g. erro-
neously changing the order of some option on forms or user interfaces), or individuals may purposefully misreport preference
rankings, not with intent of manipulating the system, but for privacy reasons.1 For example, an individual may be reluctant to
reveal their passion for country music in certain social settings, or may prefer to not reveal certain preferences so as to avoid
sharing too much information with advertisers.
We propose a general probabilistic framework for modeling noisy subjective preferences. We also present an empirical

methodology for studying noises in subjective preferences and their impact on group decision making and aggregation tasks.
Under this framework, we analyze four well-known voting rules (Borda, Plurality, Kemeny, and Copeland) on various noise
models, preference data, group sizes, and preference distributions. Our findings demonstrate the degree by which different vot-
ing rules are tolerant to noise, and illustrate that each rule is highly sensitive to the underlying noise model. That is, it is not
possible to rank the voting rules in terms of general robustness and reliability against noise. Our models and empirical findings
raise a number of interesting discussion points and future research directions in both theory and practice.

2 RELATEDWORK

We review the related work on group recommendationmethods, noisy preferences and robustness of voting rules, noisy objective
preferences, preference elicitation and group recommendation with incomplete preferences, and preference ranking learning.

2.1 Group Recommendation
Group recommendation methods can be widely classified as follows: (i) Artificial/Virtual profile methods14, where joint artificial
user profiles for each group of users are created to keep track of their joint revealed/elicited preferences; (ii) Profile-merging
methods5,15, which merge group members’ individual profiles to form a group profile, based on which recommendations are
made; (iii) Recommendation/scoring aggregationmethods16,17,18,19,20,21,22,23, which aggregate the recommendations (or inferred
preferences) for each groupmember into single group recommendation list (or recommended option). This aggregation is usually
conducted by a group consensus function (or social choice function). See Felferning et al.9 for a detailed overview of group
recommender systems.
Our focus in this paper is on the third category. While assuming the individual preferences are inferred or elicited, we narrow

our focus on the robustness of social choice functions (or group consensus functions) against noise in inferred/elicited subjective
preferences.

2.2 Noisy Preferences and Robustness
Procaccia et al.24 studied worst-case robustness of voting rules for noisy preferences where their noise model chose k pairs of
adjacent candidates (in a worst case preference profile) uniformly at random and swapped them. A similar noise model was also
used by Shiryaev et al.25. Our work differs from this literature in several ways. Instead, we are interested in studying various
forms of aggregation rules and methods for dealing with noisy subjective preferences in the average case (i.e., probabilistic
framework), rather than in the worst case. To this end, we propose a general probabilistic generative model for noisy preferences,
explaining how noisy preferences arise from true subjective preferences.

2.3 Preference Elicitation and Group Recommendation with Incomplete Preferences
There has been recent interest in elicitation and aggregation of uncertain or incomplete preferences. Examples include elicitation
of voter’s preference distribution over rankings26, aggregation of incomplete subjective preferences27,28, and aggregation of
incomplete preferences over social networks for group recommendation21. Our work differs in several ways. We do not expect
voters to be aware of their uncertainty of their own preferences, nor do we assume they can explicitly report it. Rather than

1There is a large body of research on manipulation of voting rules 8. In this paper, we do not address strategic issues and make the explicit assumption that the
misreporting of preferences is non-manipulative in nature.
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assuming that the preferences are noise-free, we assume that full-rankings are observed (or inferred through preference-learning
methods) but are noisy.

2.4 Noisy Objective Preference
An alternative interpretation of voting is to view votes as noisy realizations of some objective ground truth ranking, with vot-
ing rules interpreted as maximum likelihood estimators of the correct outcomes29,30,31,32,33,34,35. In this setting, there exists a
“correct” ranking (i.e., ground truth ranking) and each voter’s ranking corresponds to a noisy realization of this correct ranking.
Thus, if a noise model is given, one can compute the maximum likelihood estimate of the correct outcome29,36. Conitzer and
Sandholm30 studied common voting rules to determine for which there exists a noise model such that the rule can be interpreted
as maximum likelihood estimate. The maximum likelihood approach is extended to partial orders31, and is studied in multi-
issue domains37, and for selecting a subset of alternatives38. Assuming that there is a ground truth ranking, Caragiannis et al.32
studied the number of votes that a voting rule needs to reconstruct the true ranking. Also, voting rules under adversarial noise
model are studied39. Our work is distinguished from this literature by lack of the assumption of the common correct ranking for
all voters; i.e., individual rankings are subjective in our model rather than objective.

2.5 Preference Ranking Learning
There is a rich literature on learning preference models40,41,42,43. Gormley and Murphy40 develop learning algorithms for mix-
tures of both Placket-Luce models and Benter models44. A spatial model combined with Placket-Luce model is deployed for
exploring voting data45. Murphy andMartin46 employ a mixture of distance-based ranking models to describe individual prefer-
ences (in the form of full rankings) from a heterogeneous population. Similarly, Busse et al.41 learn a mixture of ranking models
for partial preferences of the top-t type (i.e., individuals have ranked their t favourites out of m items). Lu and Boutilier42 relax
the restriction on t-type partial rankings by representing partial rankings as pairwise comparisons. More recently, the learning
of the mixtures of distance-based ranking models with the generalized weighted distance metric has been studied47. Azari et
al.43 studied conditions on exponential families of random utility models (e.g., Thurstone and its variants) under which fast
inference within a Bayesian framework is possible. Salehi-Abari and Boutilier developed inference methods21 and probabilis-
tic models48 of preference rankings correlated over social networks. Our focus is a little different than this literature: while we
use some probabilistic machinery and frameworks from this field, our main focus is on understanding how robust preference
aggregation rules are with respect to noise.

3 A MODEL FOR NOISY SUBJECTIVE PREFERENCES

We here present our stochastic noise process in which we differentiate true subjective preferences from revealed noisy subjective
preferences.2

3.1 Ordinal Preferences
We consider a set of m alternatives  = {a1,… , am} and a set of n individuals (or agents)  = {1,… , n}. A strict preference
relation≻i for agent i ∈ over is a binary, transitive, asymmetric, and total (or complete) relation, where the notation x ≻i y
is interpreted as alternative x is preferred to alternative y by agent i. Given a strict preference ordering,≻i, this uniquely defines a
ranking, ri, over, where for any x, y ∈ , if x ≻i y then x is ranked above y in ri. Similarly, given a ranking ri ∈ Ω() where
Ω() is the set of permutations over, there is a corresponding unique strict preference ordering. Thus, in the rest of this paper
we work in the space of rankings over, and use the term ranking, preference ranking, and preference ordering interchangeably.

3.2 Noisy Subjective Preferences
Given individual i ∈  , we distinguish between its true preference ranking ri ∈ Ω() and its observed/revealed prefer-
ence ranking r̃i ∈ Ω(). We assume that for each i ∈  , its true preference ranking ri is independent and identically

2Through this paper, a true subjective preference refers to a noise-free subjective preference.
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FIGURE 1 Probabilistic model: true preferences {ri}, revealed preferences {r̃i}, and noise parameters {�i}.

distributed by a parameterized ranking distribution p(r|�) where � is the vector of parameters: ri∼p(r|�).Many possible options
exist for this ranking distribution such as distance-based models (e.g., �-Mallows), multistage models (e.g., Plackett-Luce),
paired comparison models, mixture models, and spatial models. See Marden49 for an excellent overview on models of ranking
distributions.
We assume that individual i’s revealed preference ranking, r̃i, is a noisy observation of its true preference ri. These noisy

observations might arise due to various reasons; for example, individuals might make mistakes when reporting their preference
rankings or may purposefully misreport their preference for privacy reasons. In particular, we assume that r̃i is drawn from a
conditional distribution g(r|ri, �i):

r̃i ∼ g(r|ri,�i),
where �i is the parameter controlling the extent of noise for individual i. Note that �i can be different for each individual, thus
allowing us tomodel a populationwith heterogeneous levels of noise in observed preferences.We consider a Bayesian framework
by assuming �i are drawn independently and identically from a prior distribution ℎ(x|)with the vector of parameters . Figure 1
depicts the graphical representation of our probabilistic model.
One plausible class of ranking distributions well-suited for characterizing this conditional distribution is distance-based rank-

ing distributions50,49. These distributions have ranking probabilities that decrease with increasing distance from a “modal” or
“reference” ranking � ∈ Ω():

P(r|�, !) = 1
 (!)

exp(−!d(r, �)), (1)

where! ∈ [0,∞) is a concentration or dispersion parameter, (!) is a normalizing constant, and d(r, �) is a distance between
r and �. As ! → ∞, P becomes concentrated at the reference ranking �, whereas for ! = 0, P is the uniform distribution over
Ω(). Distance-based ranking models differ in the choice of distance metrics.
The widely-used Mallows �-model is an example of distance-based ranking distribution with d being Kendall’s � distance

d� , measuring the minimum number of pairwise swaps required to transform one ranking to another one. One can write the
probability of ranking r under Mallows �-model by

P(r|�, �) = 1
Z(�)

�d� (r,�), (2)

where � = exp(−!) is dispersion parameter for controlling the extent of noise, and Z(�) is a normalizing constant. The
�-mallows model has been widely studied for modeling noise in objective preferences29,30,31,37,32.

Example: �-Mallows noise model. We can model an individual i’s noisy revealed preference r̃i of his/her true preference
ranking ri using Mallows’ �-model. To do so, we assume that the modal ranking � is i’s true ranking, ri, and thus the probability
of having some observed ranking r̃i is given by the conditional distribution

g(r̃i|ri, �i) =
1

Z(�i)
�d� (r̃i,ri)i , (3)

where �i is dispersion parameter for controlling the extent of noise in i’s revealed preference.
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4 EXPERIMENTAL METHODOLOGY

Our proposed stochastic process can be deployed for studying the robustness of preference aggregation methods or voting rules
against noisy subjective preference rankings. We describe a general experimental methodology, which can be used for such
studies. The general idea of our methodology is that for each aggregation method, we measure its robustness by comparing the
group preference aggregated from noisy preferences with the group preference aggregated from true preferences. The larger this
difference is, the less robust the aggregation method is. In Section 5, we apply this methodology and study four well-known
voting rules.
Our methodology starts with generating true preferences for a group of n agents. We assume that individual true preferences

over  are drawn independently from a ranking distribution (e.g., Mallow’s model or Plackett-Luce model) or a real-world
preference dataset (e.g., Sushi dataset). We let R denote the set of true preference ranking of those n agents. We then generate
a noisy ranking for each individual in the group using an instance of noise model class (e.g., distance-based ranking models
discussed above). We let R̃ represent the set of observed noisy preference ranking for agents in the group.
To examine the effect of noise for aggregation method F , we distinguish between the aggregated ranking under true prefer-

ences rAgg = F (R) and aggregated ranking under observed preferences r̃Agg = F (R̃). We compute the extent to which these
two aggregated rankings differ from each other using two different metrics.
The Scaled Kendall-Tau Distance (SKTD),

SKTD(rAgg , r̃Agg) =
2

m(m − 1)
d�

(

rAgg , r̃Agg
)

,

measures how close the aggregated ranking given true preferences rAgg is to the aggregated ranking given observed noisy
preferences r̃Agg . Here, d� is Kendall’s � distance, measuring the minimum number of pairwise swaps required to transform one
ranking to another one. We note that SKTD(rAgg , r̃Agg) ∈ [0, 1] where 0 is the case where rAgg = r̃Agg , and 1 represents the
maximum possible difference. Thus, the lower the SKTD is for a particular voting rule or aggregation method, the more robust
that rule is to noise.
Our SKTD metric is of special importance, when aggregation method is used in practice for outputting the group preference

ranking over all alternatives. However, sometimes, aggregation method only intend to find the top ranked item for the group. So,
we introduce another comparison metrics for comparing the top ranked item in the aggregated rankings to suit better top-ranked
recommendation. The Disaggreement Distance (DD) is defined as

DD(rAgg , r̃Agg) = 1[r−1Agg(1) = r̃
−1
Agg(1)],

where,1[.] is the indicator function and r−1(1) represents the item ranked first in the ranking r. Note thatDD(rAgg , r̃Agg) ∈ {0, 1}
where 0 represents the case where the top ranked item is the same in both rAgg and r̃Agg . We note that DD is only sensitive to
the agreement of top-ranked items and is not impacted with the order of other items in the aggregated rankings.
For each setting (e.g., fixed noise model, true preference model, group size n, etc.), one can generate large number of instances

and report the average of SKTD and DD over those instances for the aggregation method under investigation.

5 EMPIRICAL EXPERIMENTS

We report on a series of experiments where we measure the noise tolerance of several well-studied voting rules. Our general
goal is to analyse their robustness under various settings including true preference distributions, noise models, group sizes, the
number of alternatives. We intend to understand which voting rule is the most robust rule for each setting and if any of our
examined voting rules is dominant under all settings (i.e., it is always more robust than others).

5.1 Experimental Setup
Before presenting our experiments and their results, we discuss our experimental setup including examined true preference
distributions, noise models, voting rules, and group sizes.

True Preferences. We assume that individual true preferences over  are drawn independently from a ranking distribution or
a real-world preference data set.
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We consider two variants of ranking distributions: unimodal and bimodal. For unimodal, we consider a �-Mallows model
parameterized by dispersion �D and reference ranking �D (see Eq. 3). Our unimodal distribution captures the scenarios in which
there is one most popular ranking (i.e., reference ranking), and the popularity of other rankings decreases with their distances to
the reference ranking. We also consider bimodal distributions. We specifically focus on a two-component mixture of �-Mallows
model specified by probability distribution

P(r|�,�,�) =
2
∑

i=1

�i
Z(�i, m)

�d� (r,�i)i ,

where �i, �i, �i are the mixing proportion, dispersion parameter and reference ranking for component i, respectively. To reduce
the number of parameters in our experiments, we let �1 = �2, �2 = ⃖⃖⃖⃖�1, and �1 = �2, where ⃖⃖⃖⃖�1 is the reverse ranking of reference
ranking �1 (i.e., the ranking with maximum distance to �1). Thus, we can re-parameterize our bimodal distribution by dispersion
�D and reference ranking �D; so

P(r|�D, �D) =
0.5

Z(�D, m)
(�d� (r,�D)D + �d� (r,⃖⃖ ⃖�D)D ).

Our bimodal distribution captures the scenarios when there are two popular maximally distinct rankings, and the popularity of
other rankings decrease with the distance from these two modals.
For unimodal and bimodal distributions, we fix �D = (1,⋯ , m) but vary �D over {0.5, 0.75, 0.9, 1.0}. For �D = 1.0, the

ranking distribution is impartial culture, in which all rankings are equally likely. In contrast, with �D = 0.5, rankings will be
distributed very close to reference ranking(s). We note that our choice of �D is arbitrary, and the results are the same for any
other �D due to the symmetric nature of ranking space.
We also run extensive experiments on true preferences drawn from real-world preferences from the 2002 Irish Election51 and

Sushi data sets52. The Sushi and Irish datasets were obtained from the websites of the original owner of the datasets. The Irish
Election data consists of two data sets: Dublin West and Dublin North. Dublin West (resp. Dublin North) consists 29,989 (resp.
43,942) ballots of the top-t form, of which 3800 (resp. 3662) are complete rankings. The Sushi dataset consists of 5000 complete
preference rankings over varieties of sushi. For all three data sets, we created preference data sets with various values m from
their complete preferences, by choosing m candidates and limiting each individual’s preferences to these m options. While it is
true that we have no way of checking whether the revealed preferences in these data sets correspond exactly with people’s true
preferences, we argue that testing our techniques on these observed preferences is still enlightening.

Noise Models for Preferences. Given the true ranking, ri, of individual i we generate a noisy ranking for the individual using
three different classes of noise models. The classes of noise models differ based on how they distribute the noise. The entire
model draws noisy rankings for individual i from a �-Mallows distribution with dispersion parameter �N and reference ranking
ri. The top noise model fixes the bottom m

2
items in the ranking ri and then applies a �-Mallows model with dispersion �N on

the top m
2
items, whereas the bottom noise model does the reverse. In both these models noise is isolated to only part of the

ranking. We believe each of these models can be a valid model and their validity is context dependent.3
We vary �N over {0.25, 0.5, 0.75, 0.8, 0.9} in our experiments. Unless noted otherwise, all experiments use the entire model.

Group Size and Number of Alternatives. In addition to true preference distribution and noise models, group size and the
number of alternatives might be impacting factor in determining robustness of voting rules. For all experiments, we vary the
number of alternatives m over {4, 5, 6} and the group size n over {5, 10, 20, 50, 100}.

Voting Rules.We consider four preference aggregation methods (or voting rules) in our experiments: Plurality, Borda, Copeland
and Kemeny8.
Plurality and Borda are examples of positional scoring rules where a positional scoring rule is defined by a scoring vector

� = (�1,… , �m)where �1 ≥… ≥ �m. For each voter i ∈ , an alternative aj receives �k points if it is ranked in the ktℎ position
by i. These scoring vectors or “votes” are aggregated by summing across the scores provided by all voters for each alternative,
with the final aggregated ranking corresponding to the alternatives ordered based on decreasing aggregated scores. Plurality
corresponds to the scoring vector (1, 0,… , 0) while Borda corresponds to the scoring vector (m − 1, m − 2,… , 1, 0).
Copeland and Kemeny are examples of Condorcet consistent voting rules8. The Copeland rule orders alternatives based on

the number of their pairwise victories, given a set of preference rankings (a tie is a half of a victory). The Kemeny rule returns

3One future direction is to validate these noise models in various contexts through a set of lab studies. We conjecture that noise in ranking boils down to the underlying
utilities of paired items. If two items have utilities close to each other, the probability of a switch should be higher as the user is more indecisive. This can happen for items
on the top or bottom. Development of such models is an interesting future direction.
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FIGURE 2 Average SKTD (left) and DD (right) for Kemeny under our unimodal preference distribution, various m, n, �D, and
�N . The x-axis changes over n and �N whereas the y-axis changes over m and �D. Best viewed in colour

the ranking that minimizes the sum of Kendall-Tau distances given a set of preference rankings {ri|i = 1,⋯ , n}:

RKemenyAgg = argmin
r∈Ω()

n
∑

i=1
d�(r, ri), (4)

where d�(r, ri) is Kendall’s � distance between ranking r and the individual i’s preference ranking, and n is the group size.

Repetition and Statistical Analyses. For each setting (e.g., �D, �N , m, n), we generate 500 instances and report the average
of SKTD and DD over those instances for all four voting rules. To mitigate the statistical noise of our experiments, we ran
paired t-tests (at confidence level 0.05) for any pairwise comparison of voting rules, and all reported findings are significant
with p = 0.05.

5.2 Empirical Results
We discuss our results for analysing the robustness of our examined voting rules under various class of true preferences and
noise models.

Unimodal Distributions for True Preferences. Figure 2 shows the average SKTD and DD (over 500 instances) for the Kemeny
voting rule under the unimodal distribution, while varying m, n, �D, �N . The x-axis changes over n and �N whereas the y-axis
changes over m and �D. We note, unsurprisingly, that average SKTD increases as the noise in the revealed preferences (i.e.
controlled by �N ) and preference diversity (i.e controlled by �D) increase. Also, the average SKTD decreases as either n or m
increases. Our findings for Borda, Copeland and Plurality were qualitatively similar.
Figure 3 illustrates the best (minimum avg. error) and worst (maximum avg. error) voting rules of each configuration, under

our unimodal distribution model, using both DD and SKTD as the judgment criteria. Figure 3(a) and Figure 3(b) show the best
voting methods for each configuration under SKTD and DD respectively. We observe that, in both cases, Kemeny and Borda
generally outperform other methods. For SKTD, Kemeny seems to be the best method when n ≥ 10 and �D ≤ 0.75, or when the
population size is medium to large and the preferences are similar. Borda outperformed other voting methods when �D ≥ 0.9,
that is, in situations where individuals’ preferences were not strongly correlated. We also observed that Plurality performed well
if the population is very small, and both �D and �N are high. Using average DD as the criteria of interest, we note that for many
cases it was impossible to find a clear best voting method. However, Kemeny and Borda were dominant in some settings, with
Kemeny tending to do well on preference distributions that were fairly peaked (i.e. �D ≤ 0.75) and Borda doing well otherwise.
Figures 3(c) and 3(d) show the worst voting rules under SKTD and DD respectively. Plurality was the weakest rule in most

settings with significant results.
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(a) Methods with min. avg. SKTD, unimodal dist. (b) Methods with min. avg. DD, unimodal dist.
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(c) Methods with max. avg. SKTD, unimodal dist. (d) Methods with max avg. DD, unimodal dist.

FIGURE 3 The best (minimum avg. error) and worst (maximum avg. error) methods of each configuration, under our unimodal
distribution, for DD and SKDT. Confidence level 0.05. Best viewed in colour.
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FIGURE 4 Average SKTD, Kemeny, bimodal distribution.

Bimodal Distributions for True Preferences. Figure 4 shows the average of SKTD for Kemeny under the bimodal distribution
model.4 Like with the unimodal distribution results, SKTD increases with �N . Interestingly, however, SKTD (and DD) are
almost insensitive to�D and population size n, indicating that the structure of the underlying preference distribution is important.
Figure 5 shows the best (minimum avg. error) and worst (maximum avg. error) methods of each configuration, under the

bimodal distribution, for SKTD and DD. The statistical test is the same as described for the unimodal setting. Figure 5(a) and

4Results for the other voting rules, as well as results for DD were qualitatively similar.
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(a) Methods with min. avg. SKTD, bimodal dist. (b) Methods with min. avg. DD, bimodal dist.
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(c) Methods with max. avg. SKTD, bimodal dist. (d) Methods with max avg. DD, bimodal dist.

FIGURE 5 The best and worst methods, under bimodal distribution. Conf. level 0.05. Best viewed in colour.

Figure 5(b) show the best methods under SKTD and DD respectively. We observe that, in general, Borda outperforms other
methods, unlike in the unimodal case where Kemeny was the dominant voting rule. We also note, again, that Plurality did
well with small populations and high �D and �N . Figures 5(c) and 5(d) show the worst methods under SKTD and DD (resp.).
Again, Plurality is the worst voting rule under either criteria for almost all settings where a worst rule could be determined.
The cross-examination of Figures 3 and 5 suggests that when the dispersion of true preferences is high (i.e., large �D) and the
noise dispersion is low (i.e., small �N ), the Borda rule is a dominant rule with regard to both DD and SKTD regardless of the
underlying distribution for true preferences.

Real Preference Data for True Preferences. Figure 6 shows the best (minimum avg. error) and worst (maximum avg. error)
voting methods of each configuration for various data sets and performance metrics. We observe that, in general, Borda outper-
forms other methods for all data sets when measured with both SKTD and DD; see Figure 6(a-b). This is similar to the bimodal
distribution findings reported earlier. Plurality seems to do well again when noise is very high and group sizes are very small.
Figures 6(c) and 6(d) show the worst methods under SKTD and DD (resp.). Again, Plurality is the worst for all settings (except
three ones) under both SKTD and DD.

Different Noise Models.We now vary noise models while fixing m = 6. Figure 7 shows the best and worst methods for various
data sets, noise models, group sizes, and performance metrics. For the Entire and Top noise models, Borda outperforms other
methods for all data sets under both SKTD and DD; see Figure 7(a-b), while Plurality performs poorly. This is reasonable since
plurality is highly sensitive to noise in the top ranked items, as captured by the Top noise model. For the Bottom noise model
we observe that Plurality outperforms all other voting methods in terms of both SKTD and DD, as it is immune to noise in
low-ranked items. When considering SKTD, both Kemeny and Copeland perform poorly, while for DD and small populations,
Borda performs poorly. This might be explained by the observation that when the individuals have relatively diverse preferences,
scores of noisy lower-ranked items are influential in the aggregated scores when the population is small.
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FIGURE 6 The best and worst methods for real-world data sets. Conf. level 0.05. Best viewed in colour.
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(a) Best methods with minimum average SKTD (b) Best methods with minimum average DD
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(c) Worst methods with maximum average SKTD (d) Worst methods with maximum average DD

FIGURE 7 The best and worst methods for various data sets, noise models. Confidence level 0.05. Best viewed in colour.
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6 CONCLUSION AND FUTUREWORK

Noise in reported subjective preferences can lead to poor outcomes once preferences are aggregated and used for joint decision
making or group recommendations. In this work we propose a general probabilistic framework for modeling noise of subjective
preferences along with empirical methodology for studying the robustness of aggregation methods against noise. Under our
framework, we then rigorously analyze the accuracy and reliability of four well-recognized social choice methods—Plurality,
Borda, Kemeny, and Copeland—for both single-option group recommendation (or voting) and aggregation tasks.
Our empirical results show that the underlying noise model influences the performance of the different group decision mak-

ing methods. Borda generally performed well when noise is distributed over entire or bottom of rankings. This is consistent
with empirical findings which showed that Borda tended to be a robust choice for aggregating objective rankings in human-
computation domains53,33. However, Plurality outperforms others when the noise is more present in the low-ranked items. We
argue that a contribution of this work is in highlighting the fact that the robustness of social choice methods varies depending
on the underlying noise model and preference distributions. This also highlights the importance of modeling subjective noise
for group decision making and recommendation.
There are many fascinating directions to explore in future work. Theoretical analyses of our probabilistic framework can

shed light on how model parameters effect the reliability of any social choice method, and possibly answer what are the main
characteristics of social choice methods which are more resistant to noise. Of practical importance is studying the presence and
form of noise in subjective real-world preferences in various contexts (e.g., movie, food, political orientation, etc.). One can
develop inference algorithms which can leverage learned true preference of an individual for more accurate prediction of other
individuals’ true preferences. Another interesting direction is to generalize our probabilistic framework to partial preferences.
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