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Abstract Password guessers are instrumental for assessing
the strength of passwords. Despite their diversity and abun-
dance, comparisons between password guessers are lim-
ited to simple success rates. Thus, little is known on how
password guessers can best be combined with or comple-
ment each other. To extend analyses beyond success rates,
we devise an analytical framework to compare the types of
passwords that guessers generate. Using our framework, we
show that different guessers often produce dissimilar pass-
words, even when trained on the same data. We leverage
this result to show that combinations of computationally-
cheap guessers are as effective in guessing passwords as
computationally-intensive guessers, but more efficient. Our
framework can be used to identify combinations of guessers
that will best complement each other. To improve the suc-
cess rate of any guesser, we also show how an effective
training dataset can be identified for a given target password
dataset, even when the target dataset is hashed. Our insights
allow us to provide a concrete set of practical recommen-
dations for password checking to effectively and efficiently
measure password strength.

Keywords Password Checking, Password Guessers,
Passwords, User Authentication

1 Introduction

Passwords are presently the most common form of user au-
thentication, providing the first layer of defense in most sys-
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tems. User authentication aims to confirm a user’s claimed
identity, typically by something the user knows (e.g., a
password), something they have (e.g., a mobile device),
or something they are (e.g., a biometric). Despite decades
of research into more secure authentication methods, pass-
words remain dominant mainly due to their ease to imple-
ment and familiarity to most users [5]. Password systems,
in spite of their popularity, suffer from many security is-
sues as passwords are mistakenly given to attackers [46],
reused across accounts [9], and cracked by guessing attacks
[4, 16, 33, 37, 39, 51, 53, 57].

Password guessing attacks are a threat to both accounts
(particularly after a data breach of hashed passwords) and
hard-disk encryption (where passwords are used as a key).
To protect against password guessing attacks, administra-
tors are advised to perform password checking, either proac-
tively at the time of password creation or reactively through
attempting to crack their own password databases [3]. While
there are many password guessers available, the administra-
tor’s choice of them is critical for effective password check-
ing. However, there is uncertainty as to which guessers to
use, and how to train them, for best results.

To make an informed decision, an administrator must
understand how password guessers compare to and comple-
ment each other under different conditions. Unfortunately,
the literature lacks methods to support such decisions and
analyses of guesser combinations and training. Our work
aims to fill this gap, by creating and applying a framework
to put a set of password guessers “under a microscope", in
order to support such decisions.

Our contributions are as follows: (1) We create an ana-
lytical framework to reveal insights into password guessers’
behavior and their ability to complement and substitute each
other. Our framework is an asset in identifying sets of com-
plimentary guessers (as shown in our experiments). (2) We
apply our framework to perform a comprehensive compari-
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son between a set of six popular password guessers, across a
variety of training conditions. This comparison is arguably
the most comprehensive to date, as it compares many as-
pects of the password guessers, including how they com-
plement each other, how well they generalize, how sensitive
they are to training data size, and their success rate over six
different training and testing datasets.(3) We show how prac-
titioners can get more bang for their buck by using combi-
nations of computationally-cheap guessers that, when used
together, have comparable success rates to computationally-
intensive guessers, but are more efficient (i.e., run faster).
(4) We perform a comprehensive analysis of six publicly
leaked password datasets, to support our investigation on
how guesser performance is impacted by different aspects of
training data. (5) We describe how a useful similarity met-
ric can be applied to identify a similar (which our results
support is best) training dataset for password guessers, even
when the target dataset only contains hashed passwords.

Our work has two primary outcomes: (i) Our results al-
low us to provide a set of recommendations for practitioners
performing password checking. (ii) Our analytical frame-
work supports more comprehensive comparisons between
password guessers. We discuss use cases regarding how re-
searchers and practitioners can use our framework to under-
stand how additional password guessers can compliment or
substitute others.

2 Related Work

Unfortunately, it has been repeatedly shown that user pass-
words are often similar or identical, and are consequently
guessable by an adversary [4, 7, 34, 35]. In this section,
we review some security concerns with passwords, their
counter-measures, and finally how our work fits into the lit-
erature.

Patterns in Passwords. Many users adopt common strate-
gies for creating their passwords to help them remember
their passwords. However, these strategies leave behind spe-
cific patterns, which often make passwords more guessable.
These patterns include keyboard patterns [43], distribution
of character classes (or password structures) [56], replace-
ment of letters with resembling characters (e.g., e to 3) [29],
popular topics (e.g., love) [51] and dates [52].

Reuse of Passwords. Password reuse weakens password
strength. When a password is reused across multiple ac-
counts, the breach of a password in one account could lead
to a breach of other accounts. The average password is used
for approximately 6 different websites [17], and 77% of
users either reuse or modify an existing password [9]. These
reused passwords have been exploited in targeted attacks
(i.e., against a single target user), with success ranging from

16% in 1000 guesses [39] to 32-73% in 100 guesses when
personal information is also incorporated [53] .

Password Composition Policies. To prevent users from se-
lecting weak passwords, many systems implement password
composition policies—sets of rules that a new acceptable
password must follow. Common examples of composition
policies include a minimum password length and/or the in-
clusion of characters from multiple character classes (e.g.,
lowercase, uppercase, numbers, special characters). Despite
their practical benefit in strengthening selected passwords
[33, 45], overly strict password policies push users to inse-
cure behaviors [6, 28, 33] including writing down passwords
[28], reusing passwords [6, 33], or extending a weak pass-
word with a special character [33]. Partly due to this usabil-
ity shortfall, many social-media websites, which are often
targets of attacks, choose to adopt less restrictive policies
[18].

Password Meters. Password meters, by estimating the
strength of passwords during creation, encourage users
to create stronger passwords [48]. However, most of the
heuristic-based meters used in practice don’t accurately re-
flect actual password strength [12]. Recent developments
focus on various approaches, such as advanced heuristics-
based methods [58], probabilistic methods (e.g., Markov
model) [7], and neural networks [37, 39, 47]. Proposals
based on neural networks, Markov models, and PCFGs
have been found to outperform others [23]. Also, pass-
word meters can be personalized either by taking into ac-
count a user’s personal information (e.g., user profile [30] or
previously-leaked passwords [39]) in measuring the pass-
word strength, or by providing personalized feedback for
password strength improvement [47].

Password Guessing Tools. There are many widely-studied
guessing tools and techniques for guessing passwords.
Markov models have been promising in password guess-
ing [16, 38]. Probabilistic context-free grammars (PCFGs)
[57] (and its extensions [27, 55]) create grammar structure-
based password guesses, and has been widely-used (see,
for example [4, 7, 9, 32, 35, 48]). The semantic guesser
[51] expanded PCFGs to exploit semantic patterns in pass-
words. Recently, neural network guessers have drawn con-
siderable attention [26, 37]. The use of multiple guessers has
been proposed to measure password strength [49]. While
some guessers employ a combination (e.g., PCFGv4 uses
OMEN), it is not clear how to confirm they are using the
most complementary guessers, nor are there any studies
or methods to support their identification. Many password
guessers need to be carefully tuned on training datasets to
effectively guess passwords of a target dataset. Some pass-
word guessers are sensitive to language differences in train-
ing data [31], and the similarity between training and target
datasets improves guessing success [30], a finding that we
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corroborated in just one of our many experiments but using
a different method, more data, and more guessers (see Sec-
tion 4.2.2).However, it was not clear how to identify similar
data sets when the target is hashed; we describe a method to
do so using our methods in Section 5.1.

We note that practitioners need to make many deci-
sions to implement effective password checking. These de-
cisions include which subset of guessing tools to choose
among many available options, and which training dataset to
choose. To support these decisions, the literature falls short
in systematically understanding guesser behaviors and their
ability to complement or substitute one another. This work
attempts to address this gap.

3 Analytical Framework

The analytical framework presented in this section can be
applied to evaluate any set of guessers. It can also be used to
evaluate a set of training datasets to identify the best train-
ing datasets for password checking. These two use cases are
discussed further in Section 5.

We consider a set of m password guessers G =

{g1, . . . ,gm} where each gi represents a specific guesser
(e.g., John the Ripper, OMEN, etc.). We aim to understand
how each guesser gi ∈ G behaves when trained on or tested
against particular password datasets, what types of pass-
words they guess, and how similar one guesser’s behav-
ior is to others. To this end, each guesser g ∈ G will be
trained on and tested against a set of n password datasets
D = {D1, ...,Dn}, where each D j is a publicly-available
password dataset (e.g., RockYou, Twitter, etc.).1 When a
guesser gi ∈ G is trained on a dataset D j ∈ D , it can cre-
ate a password guess list Li j. To compare various guessers
trained on various datasets, we develop some statistics (see
Section 3.3) for comparing guessers’ guess lists. Our statis-
tics deploy some pairwise-comparison metrics (see Section
3.2), which use either structural features (see Section 3.1) or
the passwords shared between two lists.

3.1 Password Features

For each password w, we extract two structural features:
password length nw (i.e., the number of its characters) and
the number of character classes cw that it contains. We fo-
cus on four distinct character classes: lowercase letters, up-
percase letters, numbers, and symbols. For instance, w =

passw0rd! has nw = 9 and cw = 3 with three character
classes: lowercase letter, number, and symbol.

1 We use the terminology of “testing against a dataset” when a
guesser is guessing the passwords of a target password dataset.

To extract features from password list L′ (e.g., leaked
password database or guess list of a guesser), we first ag-
gregate the extracted features of all w ∈ L′ into a matrix
V = [vxy] where vxy is the fraction of passwords in pass-
word list L′ which contains y characters covering x character
classes:

vxy =
1
|L′| ∑

w∈L′
1[cw = x & nw = y], (1)

where 1[.] is the indicator function, and |L′| represents the
number of passwords in the list.2 The matrix V has a natu-
ral probability interpretation: when one selects a password
w from the password list L′ uniformly at random, the pass-
word w contains y characters from x character classes with
a probability of vxy. In other words, our matrix V captures
the joint probability distribution of passwords over charac-
ter classes and the number of characters. To ease our nota-
tions and analyses, we collapse (i.e., flatten) the matrix V
into a feature vector v. We refer to this feature vector as the
structural features of a password list. This simple represen-
tation allows us to preserve the impact of password policies
of each password list.

3.2 Pairwise Comparison Metrics

Our deployed pairwise comparison metrics are symmetric,
so are computed once for each pair of password lists. While
these metrics can use any features, we use either the struc-
tural features described in Section 3.1 or the passwords
shared between two lists. The use of cosine similarity com-
bined with our proposed structural password features ease
the interpretation of our analyses with regard to their con-
nections to the password policies of password datasets. The
use of Jaccard Index on the passwords shared between two
lists allows us to analyze the degree to which password
guessers have complementary behavior on the finest level
of granularity. Our metrics have been widely used in infor-
mation retrieval [1, 21, 44], data mining [2, 15], and other
password research [30]. Of particular interest is the gener-
alized Jaccard index, which as we show in Section 5 and
the Appendix, can be used to not only measure similarity
between each guesser’s output, but also measure similarity
between a plaintext dataset and a hashed & salted password
dataset.

Cosine similarity measures the angle between two non-
zero vectors. For comparison of two password lists, one can
extract structural features from each list, and then compute
the cosine similarity on the corresponding feature vectors.
The cosine similarity between two password lists A and B is
given by

C(A,B) =
vA ·vB
‖vA‖‖vB‖

, (2)

2 The function 1[s] returns 1 if the statement s is true; otherwise 0.
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where vA and vB are structural feature vectors of A and B,
respectively. ‖.‖ is the Euclidean norm, and vA ·vB is the dot
product of those two vectors. The closer the cosine similarity
value is to 1, the smaller the angle between the two vectors
is, and the more similar they are. In other words, two lists of
passwords with similar feature distributions have a high co-
sine similarity. We use cosine similarity combined with our
proposed structural features for two purposes: (i) comparing
the structure of leaked password databases with each other;
(ii) comparing the structure of two guess lists.

Jaccard index measures the extent two sets overlap with
each other, where the intersection of two sets is compared to
their union. The Jaccard index between two password lists
A and B can be computed by

J(A,B) =
|A∩B|
|A∪B|

. (3)

The closer the Jaccard index is to 1, the closer in size the in-
tersection of the sets is to their union, and consequently the
more similar two sets are. In other words, two sets of pass-
words with high overlap will have a high Jaccard index. The
Jaccard index also has a natural probabilistic interpretation:
if one chooses a password uniformly at random from either
password list, the Jaccard index captures the likelihood of
selecting a password belonging to both sets.

When password lists have duplicates (e.g., leaked pass-
word datasets), we view the password list as a multiset, a
modification of sets that allows for duplicated elements. In
these cases, we apply a generalized version of the Jaccard in-
dex [30] to preserve the frequency information of password
duplicates in password lists. Letting o(w,A) be the number
of occurrences of password w in password list A, the gener-
alized Jaccard index between two password lists A and B is
given by

J(A,B) =
∑w∈U min(o(w,A),o(w,B))
∑w∈U max(o(w,A),o(w,B))

, (4)

where U = (Ω (A)∪Ω (B)), and Ω (A) represents the set of
unique passwords in the password list A.

3.3 Statistics

Our comparison metrics can be readily used for the com-
parison of a pair of password lists. However, to compare
two guessers thoroughly, it is useful to summarize the com-
parison metrics of two guessers under different training and
testing datasets. This section explains our proposed statistics
for summarizing comparison metrics. Our statistics fall into
two categories: relating to guessing behaviors and relating
to guessing success.

3.3.1 Statistics for Guessing Behaviors

This class of statistics is devised to either compare the guess-
ing behaviors of password guessers with each other, or mea-
sure how different training datasets affect the guessing be-
havior of a given guesser.

Our guessing similarity statistic summarizes the similar-
ity of two guessers’ guess lists when trained on the same
dataset by averaging the comparison metric (e.g, Jaccard or
Cosine) of their guess lists over various training datasets.
We calculate the guessing similarity of two guessers gi and
g j by

G(gi,g j,M) =
1
n

n

∑
k=1

M(Lik,L jk), (5)

where M ∈ {C,J} is either Cosine similarity (see Eq. 2) or
Jaccard index (see Eq. 3), and Lik is the list of password
guesses (without any duplicates) generated by gi trained on
datasets Dk. Here, n is the number of datasets in D . We also
introduce successful guessing similarity to measure how two
guessers’ successful guesses are similar:

SG(gi,g j,M) =
1

n(n−1)

n

∑
k=1

n

∑
6̀=k

M
(
Lik ∩D`,L jk ∩D`

)
. (6)

One might be interested in measuring how similarly two
different password datasets can train guessers. To this end,
we introduce our training similarity statistic which calcu-
lates the extent two different training password datasets re-
sult in generating similar guess lists of passwords when
used for training. We define training similarity between two
datasets D j and Dk by

T(D j,Dk,M) =
1
m

m

∑
i=1

M(Li j,Lik), (7)

where m is the number of different guessers in G . This for-
mula computes how similarly D j and Dk can train guessers
on average. By capturing the extent two various datasets
are effectively similar in training guessers, one can identify
training datasets which are as effective as another dataset
in training guessers. This could be used to identify effec-
tive, yet small datasets, which could drastically speed up the
training process.

3.3.2 Statistics for Guessing Success

The guessing success statistics quantify the guessing accu-
racy of guessers under various settings (e.g., training and
testing datasets), and also determine how training data af-
fects guessing success for various guessers.

When each guesser gi is trained on password dataset D j
and tested against password dataset Dk, one can compute
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its success rate, as the portion of successfully guessed pass-
words, by

si jk =
|Li j ∩Dk|
|Dk|

. (8)

Note that si jk ∈ [0,1], where si jk = 1 implies that all pass-
words in Dk are guessed successfully by gi trained on D j.
To summarize the success rate for a specific guesser gi, one
can compute its mean success rate over all distinct training
and testing datasets by

〈si::〉=
1

n(n−1)

n

∑
j=1

n

∑
k 6= j

si jk. (9)

We similarly compute the success rate of training dataset D j
by

〈
s: j:
〉
=

1
m(n−1)

m

∑
i=1

n

∑
k 6= j

si jk, (10)

and the average success rate of a fixed dataset D j and
guesser gi by

〈
si j:
〉
=

1
n−1

n

∑
k 6= j

si jk. (11)

4 Experiments

Our experiments aim to understand the impact of training
dataset choice on guessers, the performance of guessers, and
how guessers can complement or substitute one another.

4.1 Experimental Setup

We choose a variety of different password datasets and
guessers.

4.1.1 Password Datasets

Our experiments use a variety of publicly available leaked
password datasets, which have been the subject of other
password research studies (for example, [9, 22, 53, 54, 56,
59]). We have curated and cleaned these datasets by convert-
ing their passwords to Unicode. Table 1 shows the number
of total and unique passwords in each dataset as well as the
ratio between those values.3

3 We exclusively use publicly available datasets and don’t report any
specific password information. Thus, there is no risk of exposing pri-
vate user information. We keep only the passwords with no links to
their original owner.

Table 1: The password datasets, their sizes, and the ratio be-
tween unique and total number of passwords. *Merged con-
tains all other plaintext datasets in this table.

Number of Passwords

Datasets Total Unique Ratio Type

ClixSense [24] 2,222,359 1,628,205 0.7326 Plaintext
Webhost [20] 15,292,021 10,589,775 0.6925 Plaintext
Mate1 [42] 27,403,932 11,988,154 0.4375 Plaintext
RockYou [8] 32,596,319 14,337,716 0.4399 Plaintext
Fling [10] 40,769,652 16,810,091 0.4123 Plaintext
Twitter [11] 40,872,901 22,579,065 0.5524 Plaintext
Merged* 159,157,184 67,628,637 0.4249 Plaintext
LinkedIn [25] 174,243,105 61,829,207 0.3548 Hashed

4.1.2 Password Guessers

To include a wide variety of guesser behaviors, we fo-
cus on six guessers from three different classes of pass-
word guessers: Markov models, Probabilistic Context Free
Grammars (PCFGs), and Neural Networks. All examined
guessers are used with their recommended optimal/default
settings, or tuned to perform their best on our datasets as de-
scribed below. Our set of guessers was selected on the basis
of two criteria: (i) each guesser is commonly deployed in
previous studies and (ii) each guesser has publicly available
code, allowing our work to be reproducible.

John the Ripper (JtR-Markov). We use its community build
(1.9.0-bleeding-jumbo) [40] in Markov mode. We restrict
the maximum length of passwords to 12 characters, which
provided the best results and is consistent with other stud-
ies [51]. JtR runs single-threaded during both training and
guessing.

Ordered Markov Enumerator (OMEN). We use OMEN
[16, 41] with the default settings. OMEN produces only
ASCII passwords and runs single-threaded during training
and guessing.

Probabilistic Context-Free Grammar (PCFGv4). We used
PCFG version 4.0 [55], an extension of the original PCFG
[57]. This version uses OMEN to generate a certain percent-
age of passwords and generate the remainder with PCFGs.
We have disabled this feature to generate passwords exclu-
sively from PCFGv4 as the use of OMEN decreased the suc-
cess rate in most of our tests. PCFGv4 runs single-threaded.

Semantic Guesser (Sem). We use the lite version of Sem
[50, 51]. The grammars are trained as recommended using
maximum likelihood estimation, the backoff algorithm is
used for producing tags, and mangling rules are enabled for
generating guesses. Sem uses multiprocessing during train-
ing, but runs single threaded for guessing.

Neural Network (NN). We generate guesses using the NN’s
“human” mode [36, 37], and sort them in descending prob-
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Table 2: Mean success rates (and std. deviations) for training
password datasets. Datasets are ordered smallest to largest.

Training Success Rate 1m Success Rate 300m

ClixSense 15.929 (12.634) 33.737 (16.355)
000webhost 8.72 (5.387) 29.602 (11.968)
Mate1 18.337 (13.234) 38.167 (14.799)
RockYou 13.845 (14.037) 30.264 (17.592)
Fling 11.835 (9.158) 35.155 (16.393)
Twitter 20.59 (15.303) 42.815 (17.371)

ability order. We limit the length of passwords to 6–40 char-
acters to maximize NN’s success rate for our datasets. We
use a model consisting of three LSTM layers (with 1024
neurons each) and two dense layers (with 512 neurons each).
The neural network is our only guesser that uses GPU re-
sources along with CPU. The neural network runs multi-
threaded during training and guessing.

Identity Guesser (ID). This guesser takes a training dataset
as input, removes its duplicates, and outputs its unique pass-
words in descending order of their frequency in the training
dataset. In other words, this guesser computes the empir-
ical probability distribution of the passwords in the train-
ing dataset (i.e., training phase), then outputs the passwords
from the highest to the lowest probability (i.e., generation
phase). This simple guesser is a valuable benchmark for un-
derstanding how well other guessers learn and generalize.

4.2 Impact of Training Data Choice

We investigate how guessing success rates are impacted by
different aspects of training data. We train all six password
guessers on each of the six individual plaintext datasets and
test them against every other plaintext dataset, yielding 180
password cracking scenarios. For all guessers, we set the
cutoff to 300 million guesses (see Appendix A for some pre-
liminary analyses that motivate our analyses in this section).

4.2.1 Size of training dataset

We ask whether the success rate of a guesser, on aver-
age, increases with the size of training dataset. Table 2
shows the average success rates of each training dataset
over all guessers and target datasets (computed by Eq. 10),
with datasets ordered from smallest to largest size. While
our largest dataset performs the best, our smallest dataset
ClixSense outperforms both Webhost and RockYou, which
are over six and fifteen times larger than it respectively. For
a formal analysis, we calculated the statistical correlation
between the number of passwords in the training dataset
and the averaged success rate. The resulting Pearson coef-
ficient of 0.189 (p= 0.315) suggests insignificant correlation

between training dataset size and success rate. This result
suggests that a larger dataset size isn’t necessarily a require-
ment for an effective training data set.

4.2.2 Similarity between training and target datasets

We next focus on how the similarity between training and
target datasets impacts the success rate of guessers. We first
compute the cosine similarity and generalized Jaccard in-
dex (see Eq. 2 and Eq. 4) between password datasets, and
then explore the relationship of these similarities with suc-
cess rates.

Figure 1a shows that that Mate1, Twitter, RockYou and
ClixSense have high structural password similarity (i.e., co-
sine similarity). Fling and Webhost are dissimilar to other
datasets, but similar to each other. Figure 1b suggests that
the exact overlap between datasets (i.e., generalized Jaccard
similarity) is often low with exceptions for larger datasets
(i.e., Fling, Twitter, RockYou and Mate1), likely due to their
sizes.

The cross-examination of Figures 5, 1a, and 1b suggest
the datasets with higher similarity tend to have mutually
higher success rates (e.g., Mate1 and RockYou share high
similarity and mutual success rates). Thus, we hypothesize
that the similarity between training and testing datasets has a
positive effect on success rate. To test this hypothesis, we ran
Pearson statistical tests between the similarity metric of any
ordered pair of datasets and their success rates. Our cosine
similarity and Jaccard metric have correlation coefficients of
0.597 (p = 0.00049) and 0.596 (p = 0.00049) respectively.
Both are significant and large by Cohen’s convention. This
further confirms that dataset similarity, structural (cosine) or
overlap (Jaccard), is a key factor in success rate. These re-
sults complement previous findings [30] on the relationship
between the similarity of training and testing datasets and
guesser success rates. We note that this is our only experi-
ment with partial overlap with other work [30] by computing
cosine similarity and Jaccard index between datasets; how-
ever, we use a different set of datasets and guessers, different
features for cosine similarity, and a different application of
Jaccard index (between datasets rather than between their
features). We also go on to show in Section 5.1 how Jaccard
Index can be used to measure similarity even when the target
dataset is hashed.

4.2.3 Training similarity between datasets

We next explore how similarly two datasets can train a
guesser using our notion of training similarity (see Eq. 7).
This exploration might not have a direct application in
password checking, but offers interesting observations for
password guessing. Our investigation is motivated by the
surprising performance of ClixSense in Table 2. Despite
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(b) The generalized Jaccard index.
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(d) The Jaccard training similarity.

Fig. 1: Plaintext datasets with their pairwise (a) cosine similarity, (b) generalized Jaccard similarity, (c) cosine training
similarity, and (d) Jaccard training similarity. The training similarity between datasets is computed by Eq. 7. The edge
weights and colors are based on the corresponding metric value between two datasets. The node color captures the metric
average for the corresponding dataset. The node size is proportional to the dataset size.

ClixSense’s small size, its performance raises the question
of how similarly ClixSense and a bigger dataset can train
a guesser, as smaller training datasets may be desirable in
some cases to reduce training time. We exclude the Identity
guesser in this analysis due to its simplicity in learning; also,
its results mirror dataset similarity (see 4.2.2).

Figures 1c and 1d demonstrate the cosine and Jaccard
training similarity between our datasets. The cosine training
similarity is relatively high between most pairs of datasets.
The cluster of RockYou, Twitter, Mate1, and ClixSense
share relatively high overlap of generated passwords (see
their pairwise Jaccard training similarity). This means pass-
words generated from training with ClixSense, despite its
small size, have high overlap with passwords generated from
training with other datasets.

4.3 Individual Guesser Performance

To evaluate the performance of each guesser, we compute its
average success rate and runtime across varied training data,

target data, and password guessing scenarios (i.e., online and
offline attacks).

4.3.1 Guessing Success Rate

To gauge the average performance of each guesser, we train
and test every guesser on each possible pair of non-merged
plaintext datasets. Then, each guesser generates guess lists
at cutoffs of 1 million and 300 million guesses; these cutoffs
were selected to simulate online [19] and limited offline at-
tacks, respectively. Table 3 shows the mean success rate of
each guesser, computed by Eq. 9. At one million guesses,
PCFGv4 and the Identity guesser outperform others, while
JtR-Markov and OMEN perform the worst. Notably, only
PCFGv4 is able to outperform the Identity guesser at this
cutoff with a negligible margin.

For three-hundred million guesses, PCFGv4 performs
the best, with a 6% lead over the second best guesser Sem.
The Identity guesser performs surprisingly well, with an av-
erage of 30.5% (but a high standard deviation of 14.07%)
in at most 21,653,268 guesses (compared to 300 million
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Table 3: Guessers’ mean success rates at 1 Million and 300
Million guesses (standard deviations in parenthesis). The
two best and worst are highlighted with green and red, resp.

Guesser Success Rate@1M Success Rate@300M

Identity 23.238 (11.859) 30.519 (14.079)
JtR-Markov 0.665 (0.993) 27.591 (11.563)
OMEN 5.921 (3.225) 22.121 (10.749)
Sem 18.219 (10.344) 41.343 (13.274)
PCFGv4 23.551 (11.545) 47.397 (12.364)
NN 17.662 (11.585) 40.768 (19.734)

Table 4: Guesser training and generation time. Training
datasets are randomly sampled from the Merged Dataset.
Guessers (except Identity) generated 300M guesses.

Training

Guesser 1 Million 50 Million Generation

JtR-Markov 00h 00m 00.1s 00d 00h 00m 02.2s 00h 00m 33s
Identity 00h 00m 00.3s 00d 00h 00m 24.9s 00h 00m 18s
OMEN 00h 00m 03.0s 00d 00h 00m 23.0s 00h 07m 10s
Sem 00h 01m 38.3s 00d 00h 20m 14.6s 00h 55m 30s
PCFGv4 00h 03m 49.5s 00d 01h 03m 38.4s 00h 30m 58s
NN 01h 18m 08.0s 02d 17h 01m 49.0s 19h 44m 20s

guesses for other guessers).4 In its best case, the Identity
guesser trained on Twitter guesses 56.7% of RockYou, only
10.14% lower than the best guesser PCFGv4 on that same
pair. The Identity guesser’s high success rate arises from a
relatively large overlap between datasets, observed in Figure
1b. OMEN under-performs JtR-Markov, performing worst
overall at this cutoff.

4.3.2 Average Runtime

To help a system administrator understand the resource re-
quirements of guessers, we next analyze their runtimes dur-
ing training and guess list creation. Each guesser is trained
and generates guesses on the same GPU-accelerated server
which ran no other jobs. The server has 2 Intel(R) Xeon(R)
Gold 6148 CPUs with 80 total cores @ 2.40GHz and 4
Nvidia GeForce 1080 Ti GPUs. We note that only the neural
network benefits from multiple GPUs to parallelize compu-
tations.

Table 4 reports guesser training and generation time. For
training, we created two datasets by sampling 1 million and
50 million passwords from the Merged dataset.5 For each

4 The upperbound for number of guesses in the Identity guesser
is derived from the maximum number of unique passwords in our
datasets.

5 Our code for training the identity guesser (i.e., computing empir-
ical distribution of unique passwords) and its guess generation (i.e.,
sorting passwords based on their probabilities) is written in Python
without any optimization.

Table 5: Guessers’ generalizability, with 300M guess cutoff.
A higher success rate indicates a better ability to generalize.

Identity OMEN JtR-Markov Sem NN PCFGv4

15.378 15.664 30.265 33.099 39.585 43.618

guesser, the training time increases with the training dataset
size. The Markov-based and Identity guessers perform the
fastest (< 25 sec. for 50 million), with PCFGs taking longer
(about one hour for 50 million) and the neural network tak-
ing the longest (more than 2.5 days for 50 million). For pass-
word generation, we observe that the Identity guesser and
Markov models are again by far the fastest. Note that the
Identity guesser only produced approximately 67M guesses,
almost 4.5 times fewer guesses than produced by others. The
NN is considerably slower than others: 2100 times slower
than JTR-Markov, and even 39 times slower than PCFGv4.

4.4 Guesser Behaviors

We investigate the behavior of each guesser (i.e., their gen-
erated guess lists) under various training and target datasets.
We also explore how each guesser complements and substi-
tutes others.

4.4.1 Generalizability

One important characteristic of guessers is how well they
can generalize, i.e., predict and generate previously unseen
passwords. To measure this, we train each guesser on the
Webhost dataset as it is the least similar to the other datasets,
both in terms of structure (see Figure 1a) and actual pass-
word overlap (see Figure 1b). We then test the Webhost
trained guessers against every other dataset and calculate
each guesser’s mean success rate. Table 5 shows the mean
success rate of each guesser: PCFGv4 and NN outperform
others, demonstrating a relatively high degree of generaliz-
ability compared to others. The Identity guesser and OMEN
perform notably worse. This is expected for the Identity
guesser with its inability to generalize, but surprising for
OMEN. There is a notable amount of variance in the suc-
cess rates of guessers with similar approaches: 15% differ-
ence between Markov models JtR and OMEN, and 10% dif-
ference between PCFG-based guessers PCFGv4 and Sem.
This highlights how even guessers with similar underlying
approaches can display differing generalization behavior.

4.4.2 Sensitivity to Training Size

We intend to learn how each guesser’s success rate is im-
pacted by the size of training data, drawn from the same
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(a) Cosine guessing similarity with 1 million guesses.
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JtR-Markov
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Identity

(b) Jaccard guessing similarity with 1 million guesses.
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(c) Cosine guessing similarity with 300 million guesses

NN
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(d) Jaccard guessing similarity with 300 million guesses.

Fig. 2: The cosine and Jaccard guessing similarity (see Eq. 5) between guessers at the cutoffs of 1 million or 300 million
guesses. The edge colors represent the similarity value between two guessers. The edge width further highlights the relative
similarities within a figure (thicker means more similar). The node size represents the guesser’s average success rate. The
node colors represent their average similarity.

Table 6: The mean guessing success rate (and standard de-
viation in parentheses) for each guesser when trained on
different-sized subset of Twitter with a cutoff of 300M.

Training Size

Guessers 1 Million 10 Million 30 Million
Identity 21.194(10.172) 33.441(13.458) 39.853(14.186)
JtR 27.570(12.853) 27.541(12.846) 27.527(12.828)
OMEN 29.077(11.383) 29.216(10.916) 29.461(10.942)
Sem 41.493(13.669) 46.910(14.432) 48.021(14.832)
PCFGv4 41.517(11.469) 48.719(13.51) 51.178(14.242)
NN 43.688(13.420) 56.500(14.674) 58.259(14.970)

distribution. Sampling from the Twitter dataset6, we cre-
ate three different datasets of sizes 1 million, 10 million
and 30 million. After training guessers on each dataset,
we generate guess lists at a cutoff of 300M and test them
against all other datasets. Table 6 reports the mean success
rates by Eq. 11. All guessers (except JtR-Markov) improve
when trained on the larger dataset, but to various extents.

6 We train on Twitter for this purpose, as opposed to the Merged
dataset, since the Merged dataset would contain the testing (target)
data.

The Identity guesser has the most drastic improvement with
training size growth, from 21.2% to 39.85%. OMEN and
JtR-Markov show the least improvement. Sem, PCFGv4,
and NN have more modest, but notable improvements, in-
creasing their success rates by 6.5%, 9.7%, and 14.6%, re-
spectively.

4.4.3 Guessing Similarity

Using our notion of guessing similarity (see Eq. 5), we an-
alyze how similar the guess lists of two guessers are when
they are trained on the same training data. Figure 2 shows
the cosine and Jaccard guessing similarity between guessers
at cutoffs of 1 million and 300 million guesses. For both
cutoffs, PCFGv4, Sem, ID and NN share high structural (co-
sine) similarity when compared to OMEN and JtR (see Fig-
ure 2a and Figure 2c). Interestingly, despite both deploying
a Markov approach, JtR and OMEN are dissimilar. This is
likely because OMEN outputs guesses in probability order,
whereas JtR-Markov does not.

Figures 2b and 2d show Jaccard guessing similarity be-
tween guessers, capturing the overlap of guessers’ guesses,
at both cutoffs. Guessers with higher success rates (see Ta-
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0.451
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dex

Fig. 3: The generalized Jaccard successful guessing similar-
ity between guessers. The edge weights and colors represent
the similarity of two guessers. The node size represents the
guesser’s average success rate. The node color represents the
guesser’s average similarity with other guessers.

ble 3) seem to have higher Jaccard guessing similarity (or
overlap): At 1 million, the two best guessers PCFGv4 and
ID share the highest overlap whereas PCFGv4, Sem and
NN with the highest success rates at 300 million have high-
est overlaps. One can also readily observe that the Jaccard
guessing similarities decrease as the cutoff increases. This
change suggests that by generating more passwords, each
guesser has begun demonstrating their own unique guess-
ing behavior (i.e., the percentage overlap between guessers’
guess lists decreases).

4.4.4 Successful Guessing Similarity

Our guessing similarity analyses showed that guessers
trained on the same data, generate mostly unique guesses
(see Figures 2b and 2d). However, it is possible that many
of these unique guesses are unsuccessful. In this light, one
might be interested in measuring the uniqueness of success-
ful guesses between guessers. To achieve this, we use our
successful guessing similarity metric in Eq. 6 with general-
ized Jaccard index.7

As shown in Figure 3, there is still a considerable de-
gree of uniqueness in successful guesses. Even Sem and
PCFGv4—with the highest similarity—have a generalized
Jaccard index of 0.86, implying that 14% of their success-
ful guesses are unique to one guesser. Similarly, NN and
Sem, by sharing 72% of their successful guesses, owe 28%
of their success to unique passwords. Interestingly, the Iden-
tity guesser seems to have moderate Jaccard similarity with
any other guesser (i.e., its similarity values range from 0.529
to 0.725) despite its smaller guess lists sizes (i.e., ranging
from 2.2 million to 40 million compared to 300 million for

7 The generalized Jaccard allows us to weight the successful guesses
of each guesser based on their frequencies in the target dataset.

Table 7: Percentage of LinkedIn passwords successfully
guessed. Guessers are trained on the Merged dataset and cut-
off at 2 billion guesses.

OMEN JtR-Markov Identity Sem PCFGv4 NN

35.641 37.028 47.561 55.159 58.798 63.145

all other guessers). These findings offer two important rec-
ommendations: (i) the use of one guesser does not make
another guesser entirely redundant, even when the underly-
ing approach or achieved success rates are similar; (ii) The
cost-effective Identity guesser can complement any other
guessers as it has a relatively high number of successful
guesses. We explore the gains achieved by combining mul-
tiple guessers in our combination attack discussed below in
Section 4.5.2.

4.5 Combining Guessers

We evaluate the ability of password guessers to complement
one another on a previously unseen dataset (i.e., LinkedIn)
in an offline attack scenario. We begin in Section 4.5.1
by evaluating each individual guesser against the LinkedIn
dataset. Next we analyze different combinations of guessers
in Section 4.5.2.

4.5.1 Individual Guessers

To compare guessers’ performance, we train each guesser on
the Merged dataset, and allow them to each make 2 billion
guesses against the LinkedIn dataset. As reported in Table 7,
NN outperforms all others, with a 4.3% lead over PCFGv4.
PCFG-based (PCFGv4 and Sem) and Identity guessers out-
perform Markov-based guessers (OMEN and JTR-Markov).
Figure 4 depicts the percentage of guessed passwords over
the number of guesses. JtR-Markov surpasses OMEN close
to the end of the attack.8 Notably, PCFGv4, Identity, and
NN traded places for the best guesser before Identity ran out
of guesses. We next apply our findings from our successful
guess similarity experiments to further improve the results
using combination attacks.

4.5.2 Combination Attacks

Our analyses shed light on how guessers complement each
other by generating unique successful guesses. We also learn
that the Identity guesser not only complements every other
guesser, but also often outperforms some advanced guessers.

8 One might think that JtR-Markov might outperform others with
additional guesses. However, our further tests show that even after 20
billion guesses, JtR-Markov only reaches a success rate of 50.568%.
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Fig. 4: Performance of guessers trained on the Merged
dataset and tested against LinkedIn. The dotted line marks
the Identity guesser’s last guess at 67 million guesses, each
other guesser made 2 billion guesses.

These findings motivate us to design a combination attack
where the Identity guesser is used to attack a password
dataset prior to the application of a set of other guessers.
This hybrid approach is recommended in John the Ripper
where a traditional attack follows wordlist mode. We run
many independent combination attacks on LinkedIn. Each
guesser is trained on the Merged Dataset and produces two
billion guesses.

Table 8 reports the result of our combination attacks.
When ID is combined with any individual guesser (e.g.,
ID+O, ID+J, etc.), the combination attacks experience a
notable degree of improvement compared to an individual
guesser’s performance (compare the columns of sole guesser
vs. ID + guesser). JtR-Markov experiences the largest im-
provement of 18.67%. Even guessers with high success rates
(e.g., NN and PCFGv4) realize improvements of 1-4%. By
dramatically increasing the success rate of weaker guessers
(e.g., OMEN and JTR-Markov), this combined approach
makes less resource intensive guessers more competitive.

As shown in Table 8, when more guessers are com-
bined with the Identity guesser, the success rate increases,
but with diminishing returns. For example, compare J to
J+S (+7.562%), J+S to J+S+P (+3.359%), and J+S+P to
J+S+P+N (+1.991%). There seems to be two factors in de-
termining which additional guesser can improve an exist-
ing combination attack the most: the success rate of the
candidate guesser, and its successful guessing similarities
with each of the combined guessers. A candidate guesser
with higher success rate has more potential to improve the
combined guesser (e.g., compare O+J to O+S). However,
a candidate guesser with low successful guessing similari-

ties can be a more effective addition. This interplay of suc-
cess rate and successful guessing similarities might make a
less successful guesser with lower successful guessing sim-
ilarities more attractive. For example, the weaker JtR and
stronger Sem have successful guessing similarities of 0.675
and 0.902 with PCFGv4. The addition of JtR to the com-
bination attack of ID+P offers more improvement than the
addition of Sem (3.88% vs. 2.71%).

Each additional guesser also incurs higher runtime and
resource requirements. The attacks color-coded green in Ta-
ble 8 could be completed within one workday (or 8 hours),
whereas the yellow and red color-coded attacks must be
run overnight (within 8-16 hours) and over two weeks, re-
spectively. The neural network is the largest contributor to
runtime in our combinations and also adds GPU require-
ments. Interestingly, unlike the sole guesser attacks, the
slower combination attacks don’t always outperform the
faster attacks. For example, the O+J+P attack (65.466%)
runs in under 8 hours while S+P (63.866%) and O+S+P
(65.250%) take between 8-16 hours, and N (64.875%) and
O+N (65.241%) take over 2 weeks. This result implies that
competitive success rates can be achieved by the combina-
tion of computationally-cheap guessers with less resources.
These combination attacks serve as a competitive alterna-
tive for practitioners without access to GPU resources, or
with time constraints to perform reactive checking (e.g., J+P
attack outperforms N while running within a workday and
without GPU resources).

5 Discussion and Recommendations

We provide further context by presenting use cases of our
framework and a set of recommendations based on our em-
pirical results described in Section 4.

5.1 Framework Use Cases

Our framework is useful for both practitioners and re-
searchers in:

(1) Evaluating new guessers and/or settings. As new pass-
word guessers emerge, our framework can be applied to
update our knowledge of how to best combine password
guessers, by adding the new guesser to G and recomputing
the formulas in Sec. 3. Our framework equips practitioners
and researchers to assess whether or not emerging password
guessers offer some complementary power to existing and
deployed guessers. This supports a more informed selection
of sets of password guessers for password checking. Using
our framework supports evaluation beyond typical practices
of simply benchmarking individual guesser’s success rates.
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Table 8: The percentage of LinkedIn passwords cracked by an offline attack using the Identity guesser followed by a com-
bination of guessers, each making two billion guesses. The names of guessers are shortened to their first letters: (P)CFG,
(O)MEN, (N)N, (S)em, and (J)tR-Markov. Each combination attack is color-coded by its runtime for training and guess
generation: Green is less than 8 hours (i.e., a workday), yellow is less than 16 hours, and red is over two weeks.

Sole Guesser ID + 1 Guesser ID + 2 Guessers ID + 3 Guessers ID + 4 Guessers

guesser guessed guesser guessed guessers guessed guessers guessed guessers guessed guessers guessed guessers guessed
OMEN 35.641 O 52.272 O+J 57.628 J+P 65.038 O+J+S 63.825 O+P+N 67.336 O+J+S+P 66.931
JtR-M 37.028 J 55.693 O+S 61.536 J+N 65.909 O+J+P 65.466 J+S+P 66.614 O+J+S+N 67.484
Sem 55.159 S 59.773 O+P 62.907 S+P 63.866 O+J+N 66.199 J+S+N 67.247 O+J+P+N 68.060
PCFGv4 58.798 P 61.158 O+N 65.241 S+N 66.411 O+S+P 65.260 J+P+N 67.855 O+S+P+N 68.169
NN 63.145 N 64.876 J+S 63.255 P+N 67.082 O+S+N 66.705 S+P+N 67.943 J+S+P+N 68.605

(2) Identifying effective training data for password check-
ing. For guessing scenarios where the target passwords are
hashed and salted, our framework can still be applied with
the generalized Jaccard index comparison metric, assuming
that the salt of each hashed password is available to the ad-
ministrator, as is typically the case. We describe how this
can be accomplished in Proposition 1, the proof for which
can be found in the Appendix.

Proposition 1 Assuming a candidate training password list
A and salted & hashed password list Bh, the generalized Jac-
card index between A and Bh can be computed by:

J(A,Bh) =
Fmin(A,Bh)

|A|+ |Bh|−Fmin(A,Bh)
, (12)

where

Fmin(A,Bh) = ∑
w∈suppA

min(o(w,A),g(w,Bh)) .

Here, g(w,Bh) = ∑y∈Bh
1[y = H(w + sy)], 1[.] is the indi-

cator function, sy and H(.) are, respectively, the salt and
hash function originally used for computation of the salted
& hashed password y. Here, |A| and |Bh| are the number of
passwords in A and the number of salted & hashed pass-
words in Bh. Also, Ω (A) is the set of unique passwords in
the training dataset A, and o(w,A) is the number of occur-
rences of w in A.

While the offline Identity attack success rate can be used
as a proxy for measuring the similarity of a candidate train-
ing dataset A with a salted & hashed password list Bh, the
generalized Jaccard index is more informative. For exam-
ple, consider two candidate training datasets: Y with hun-
dreds of millions of entries, and dataset Z with one million
entries. If they each achieve a 50% success rate, dataset Z
should be considered more similar and selected as the best
training set. However, the pure Identity attack success rate
falls short in distinguishing Z from Y as opposed to the gen-
eralized Jaccard index which would give a higher similarity
score to Z.

(3) Identifying complementary guessers for longer offline
attacks. Guessers might offer different complementary pat-
terns for short and long guessing sessions (e.g., online vs.
offline attacks). Our experiments show the complimentary
patterns of guessers for shorter sessions (up to 300 million
guesses). To identify complementary guessers for longer at-
tacks (e.g., approx. 1014 guesses), our successful guessing
similarity (recall Eq. 6) can be employed, in combination
with Monte Carlo methods [13]), to approximate comple-
mentary effects of guessers. Rather than directly comput-
ing Lik ∪D` in Eq.6 by allowing guesser gi (trained on Dk)
to generate the guess list Lik, one can approximately deter-
mine the elements of Lik∪D` (i.e., the passwords that would
be successfully guessed in a leaked plaintext testing dataset
D`) by: (1) setting the threshold τ for maximum number of
guesses (2) for each password w ∈ D`, estimate its guess
number (i.e., the minimum number of required guesses) us-
ing Dell’Amico et al.’s approach [13] (3) if the guess number
is less than the threshold τ , it belongs to Lik ∪D`. We note
that to apply this procedure, each guesser gi should be able
to assign a probability to a password.

5.2 Recommendations

Our work provides a number of practical recommenda-
tions (R1-R4) for practitioners auditing their passwords. Of
course, this set of recommendations may update as more
guessers and training datasets are analyzed using our frame-
work. While our work can be directly applied to reactive
checking, it has a natural extension to proactive checking,
as guessers that generate probability scores for a given pass-
word can be applied as password meters.

R1: Try publicly-available leaked passwords first. Our re-
sults show that an attacker can be relatively successful by
applying the Identity guesser (i.e., the training data of leaked
passwords as a guess list) before considering any advanced
guessers. This might seem a familiar concept, occasionally
applied in practice (e.g., John the Ripper [14]). However, to
the best of our knowledge, the impact and benefits of us-
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ing an Identity guesser vs. other guessers has not been ex-
tensively quantified. For the first 1 million guesses (a num-
ber considered feasible for online attacks [19]), the Iden-
tity guesser along with PCFGv4 outperform more advanced
guessers. For offline attacks, the Identity guesser performed
surprisingly well; with only 22 million guesses, on aver-
age it achieved 64% of the success rate of the top offline
guesser PCFGv4 with 300 million guesses (see Table 3). Ad-
ditionally, in our LinkedIn experiments, the Identity guesser,
with 67 million guesses, had 75% the success rate of the
top guesser NN, with 2 billion guesses (see Table 7). These
experiments strongly suggest that the Identity guesser can
achieve high guessing success rates, comparable to the top
guessers, while using at least an order of magnitude fewer
guesses. Thus, we strongly recommend that leaked pass-
word datasets should be the first priority in password check-
ing.

R2: Apply combinations of guessers. Our results for guess-
ing similarity show that the majority of guesses produced by
each guesser are unique, even when the underlying approach
or success rate is similar. Even for successful guesses, each
tested guesser is able to crack passwords that others over-
look (e.g., the Identity guesser found millions of LinkedIn
passwords overlooked by other guessers). Our analysis indi-
cates that no single guesser is able to completely substitute
another, and they can complement each other when used
together. However, some combinations are more effective
than others. Our framework can be used to assist identifica-
tion of complementary guesser combinations. We also show
how some combinations of guessers can have comparably
high success rates with lower computing requirements. For
example, in less than 8 hours, Identity + PCFGv4 + JtR-
Markov can achieve a success rate that compares to Identity
+ NN (which takes about 2 weeks). Considering both suc-
cess rate and computing requirements, our results from tar-
geting LinkedIn passwords suggest that a reasonable strat-
egy is to apply this ordering of guessers: Identity, PCFGv4,
JtR-Markov, Sem, OMEN, NN. As discussed in Section 5.1,
our framework can be used to identify complementary com-
binations involving additional guessers, and also for long
guessing sessions.

R3: Train with datasets similar to target. Our results show
that when choosing training data, the similarity to the tar-
get data is an important factor.9 Thus, our dataset similarity
metric can be used to decide on the most effective training
dataset. The most effective dataset can be identified, even
when the target dataset is hashed, as outlined in Section 5.1.

9 These results confirm and complement previous findings [30] by
employing different features, more and larger datasets, and more pass-
word guessers. We also show how similarity can be measured between
a hashed & salted target dataset and a plaintext candidate training set.

R4: Consider using less training data. Using more train-
ing data takes more computing resources and longer training
times. Our results indicate that training dataset size does not
correlate with guessing success rates. Although when sam-
pling from the same dataset (Twitter), we observed that data
size can increase training effectiveness, the gains between 1
million and 30 million training passwords are not as large
as one might expect. Therefore, if time or space constraints
exist, a reasonable compromise would be to use a sample
of training data from a dataset with high similarity (such as
Twitter in our experiments).

6 Conclusion and Future Work

We provide an in-depth analysis of password guessers,
revealing insights regarding when and how to use them
(both alone and in combination). This work demonstrates
that combinations of computationally-cheap guessers can be
comparably effective to more resource-intensive guessers.
Our work also points towards a set of recommendations for
practitioners who use password checking tools.

Our framework (i.e., various metrics and statistics) for
comparing password guessers and training datasets can be
utilized or extended by practitioners and researchers for fu-
ture password studies. While our present work supports de-
cisions about how to best combine password guessers, there
remains some human interpretation of the results—i.e., our
framework can help identify the guessers that are most dis-
similar and have the highest success rate; however the fi-
nal decision of which to combine should be made by the
human involved (and consider computational efficiency as
well). As such, an interesting direction is to develop artificial
intelligence algorithms to automate finding combinations of
guessers with a maximum success rate under budgeted time
and resource requirements. Our present work lays the foun-
dations for such future directions. Another interesting direc-
tion for future work is to explore how to summarize a large
training dataset into a smaller dataset that trains guessers
just as well. Such a smaller training dataset would decrease
training time and aim to maximize success rate.
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Appendix A: Preliminary Analyses and Visualization

Figure 5 captures the average success rates for various pairs of train-
ing and testing datasets. One can make two important observations:
(i) some datasets (e.g., Twitter, Mate1) are more effective as training
data than others (e.g., Webhost); (ii) some pairs of datasets are effec-
tive for training and testing against each other, i.e., when one dataset
can train guessers well against another dataset (e.g., RockYou-Mate1,
ClixSense-Mate1, etc.). These two observations motivate us towards
a deeper analysis of the characteristics of effective training datasets,
discussed in Section 4.2.

Twier

RockYou

ClixSense

Webhost

Mate1

Fling

Fig. 5: The average success rates over all guessers for train-
ing and testing dataset pairs. The edges are directed clock-
wise from training to testing dataset, with colors matching
the training dataset color. The edge width is proportional to
the average success rate of guessers for a fixed training and
testing dataset pair. The node size shows the dataset size.

Appendix B: Proofs

Proof (Proof of Proposition 1) By Lemma 1 and Lemma 2, the gener-
alized Jaccard index between the password list A and unhashed pass-
word list B (which is not accessible) can be computed by:

J(A,B) =
∑

w∈suppA
min(o(w,A),o(w,B))

|A|+ |B|−∑
w∈suppA

min(o(w,A),o(w,B))
, (13)

Defining g(w,Bh) = ∑y∈Bh
1[y = H(w+ sy)] for counting the number

of occurrences of password w in the salted & hashed password list Bh,
we note that o(w,B) = g(w,Bh) and |B| = |Bh|. So Eq. 13 is equivalent
to:

J(A,Bh) =

∑
w∈suppA

min(o(w,A),g(w,Bh))

|A|+ |Bh|−∑
w∈Ω(A)

min(o(w,A),g(w,Bh))
.

Letting Fmin(A,Bh) = ∑
w∈suppA

min(o(w,A),g(w,Bh)), we derive Eq. 12. ut

Lemma 1 Let o(w,A) and o(w,b) be the number of occurrences of
password w in password lists A and B respectively. We have

∑
w∈(Ω(A)∪Ω(B))

min(o(w,A),o(w,B)) = |A|+ |B|−∑
w∈(Ω(A)∪Ω(B))

max(o(w,A),o(w,B)) .

Here, |A|= ∑w∈Ω(A) o(w,A) and |B|= ∑w∈Ω(B) o(w,B) are the number
of passwords in A and B respectively. Also, Ω (A) is the set of unique
passwords in A.

Proof One can observe that for any two numbers a and b: min(a,b)+
max(a,b) = a+b. Using this equality, we can derive

∑
w∈(Ω(A)∪Ω(B))

[
min(o(w,A),o(w,B))+max(o(w,A),o(w,B))

]
= ∑

w∈(Ω(A)∪Ω(B))
o(w,A)+o(w,B) = ∑

w∈(Ω(A)∪Ω(B))
o(w,A)+∑

w∈(Ω(A)∪Ω(B))
o(w,B)

= ∑
w∈Ω(A)

o(w,A)+ ∑
w∈Ω(B)

o(w,B).

The last equality holds as o(w,A) = 0 when w /∈ A and o(w,B) = 0
when w /∈ B. By decomposing the first summation, we have shown

∑
w∈(Ω(A)∪Ω(B))

min(o(w,A),o(w,B))+∑
w∈(Ω(A)∪Ω(B))

max(o(w,A),o(w,B)) = |A|+ |B|,

where |A| = ∑w∈Ω(A) o(w,A) and |B| = ∑w∈Ω(B) o(w,B). By rearrang-
ing the terms of this equality, we derive

∑
w∈(Ω(A)∪Ω(B))

min(o(w,A),o(w,B)) = |A|+ |B|−∑
w∈(Ω(A)∪Ω(B))

max(o(w,A),o(w,B)) .

ut

Lemma 2 Letting o(w,A) and o(w,b) be the number of occurrences
of password w in password lists A and B respectively,

∑
w∈Ω(A)∪Ω(B)

min(o(w,A),o(w,B)) = ∑
w∈suppA

min(o(w,A),o(w,B)) , (14)

where Ω (A) is the set of unique passwords in A.

Proof Partitioning Ω (A)∪Ω (B) to two disjoint sets of Ω (A) and
Ω (B)−Ω (A), we have

∑
w∈Ω(A)∪Ω(B)

min(o(w,A),o(w,B)) =

∑
w∈Ω(A)

min(o(w,A),o(w,B))+∑
w∈Ω(B)−Ω(A)

min(o(w,A),o(w,B)) .

As o(w,A)= 0 for w∈Ω (B)−Ω (A), we have min(o(w,A),o(w,B))=
0 for all w ∈Ω (B)−Ω (A). So we have derived

∑
w∈Ω(A)∪Ω(B)

min(o(w,A),o(w,B)) = ∑
w∈Ω(A)

min(o(w,A),o(w,B)) .

ut
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