
A Simple PTAS for the Dual Bin Packing Problem
and Advice Complexity of Its Online Version∗

Allan Borodin1, Denis Pankratov2, and Amirali Salehi-Abari3

1 University of Toronto, Toronto, Canada
bor@cs.toronto.edu

2 University of Toronto, Toronto, Canada
denisp@cs.toronto.edu

3 Faculty of Business and IT, University of Ontario Institute of Technology,
Oshawa, Canada
abari@uoit.ca

Abstract
Recently, Renault (2016) studied the dual bin packing problem in the per-request advice model
of online algorithms. He showed that given O(1/ε) advice bits for each input item allows approx-
imating the dual bin packing problem online to within a factor of 1 + ε. Renault asked about the
advice complexity of dual bin packing in the tape-advice model of online algorithms. We make
progress on this question. Let s be the maximum bit size of an input item weight. We present
a conceptually simple online algorithm that with total advice O

(
s+logn
ε2

)
approximates the dual

bin packing to within a 1 + ε factor. To this end, we describe and analyze a simple offline PTAS
for the dual bin packing problem. Although a PTAS for a more general problem was known prior
to our work (Kellerer 1999, Chekuri and Khanna 2006), our PTAS is arguably simpler to state
and analyze. As a result, we could easily adapt our PTAS to obtain the advice-complexity result.

We also consider whether the dependence on s is necessary in our algorithm. We show that if s
is unrestricted then for small enough ε > 0 obtaining a 1+ε approximation to the dual bin packing
requires Ωε(n) bits of advice. To establish this lower bound we analyze an online reduction that
preserves the advice complexity and approximation ratio from the binary separation problem
due to Boyar et al. (2016). We define two natural advice complexity classes that capture the
distinction similar to the Turing machine world distinction between pseudo polynomial time
algorithms and polynomial time algorithms. Our results on the dual bin packing problem imply
the separation of the two classes in the advice complexity world.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases dual bin packing, PTAS, tape-advice complexity

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.8

1 Introduction

Given a sequence of items of weights w1, . . . , wn and m bins of unit capacity, the dual bin
packing problem asks for the maximum number of items that can be packed into the bins
without exceeding the capacity of any bin.1 The search version of this problem is to find a
good packing. In the online version of this problem, the items are presented one at a time in

∗ Research is supported by NSERC.
1 This terminology is somewhat unfortunate, because the dual bin packing problem is not the dual to the

natural integer programming formulation of the bin packing problem. For some early results on the
latter see [1, 10].

© Allan Borodin, Denis Pankratov, and Amirali Salehi-Abari;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 8; pp. 8:1–8:12

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

8:2 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

some adversarial order and the algorithm needs to make an irrevocable decision into which
(if any) bin to pack the current item. The dual bin packing problem has a substantial history
in both the offline and online settings starting with Coffman et al. [14]. The performance
of the online algorithm is measured by its competitive ratio; that is, the worst-case ratio
between the value of an offline optimal solution and the value of the solution obtained by
the algorithm. It is known that the online dual packing problem does not admit a constant
competitive ratio even for randomized algorithms [8, 11]. The assumption that the online
algorithm does not see the future at all is quite restrictive and in many cases impractical.
It is often the case that some information about the input sequence is known in advance,
e.g., its length, the largest weight of an item, etc. An information-theoretic way of capturing
this side knowledge is given by the tape-advice model [3]. In this model, an all powerful
oracle that sees the entire input sequence creates a short advice string. The algorithm uses
the advice string in processing the online nodes. The main object of interest here is the
tradeoff between the size of advice and the competitive ratio of an online algorithm. Often,
a short advice string results in a dramatic improvement of the best competitive ratio that is
achievable by an online algorithm. Of course, a short advice string can be computationally
difficult to obtain since the oracle is allowed unlimited power.

A related advice model is the per-request advice model [13]. In this model, prior to seeing
the ith input item, the algorithm receives the ith advice string. Unlike the tape-advice
model, the overall length of advice is always lower bounded by n in this model. Both of
these advice models have recently received considerable attention in the research community
(see Boyer et al [5] for an extensive survey on this topic). Recently, Renault [16] studied
the dual bin packing problem in the per-request advice model. He designed an algorithm
that with 1 bit of advice per request achieves a 3/2 competitive ratio. He also showed that
with O(1/ε) bits of advice per request it is possible to achieve a 1 + ε competitive ratio.2
In [16] Renault explicitly asked, as an open problem, to analyze the advice complexity of
the dual bin packing problem in the tape advice model. In this paper, we make progress on
the advice complexity needed for achieving a (1 + ε) competitive ratio for the online dual
bin packing problem. Specifically, let s be the maximum bit size of a weight of an input
item. In particular, the overall input size is O(ns) bits. We present an online algorithm that
with O(s+logn

ε2) bits of advice achieves a (1 + ε) competitive ratio for the dual bin packing
problem. Note that it is trivial to achieve optimality with n log2 m advice bits by specifying
for each input item into which bin it should be placed. When stated in the tape advice model,
Renault’s bound for a (1 + ε) competitive ratio is Θ(n/ε). Our advice bound for achieving a
(1 + ε) approximation is exponentially smaller for the regime of constant ε and s = O(logn).
When the n item weights have s = n bits of precision, we show that the dependence on s is
necessary by exhibiting an Ωε(n) lower bound on the advice necessary to achieve a (1 + ε)
approximation.

Our main result heavily relies on a simple polynomial time approximation scheme (PTAS)
for the dual bin packing problem, which constitutes the technical core of this paper. Dual
bin packing is a special case of the multiple knapsack problem (MKP). In the MKP, each of
the n items is described by its weight (number in (0, 1]) and its value (an integer). There are
m knapsacks each with their own capacity. The goal is to pack a subset of items such that

2 Renault states the approximation as 1/(1 − ε) whereas we will use (1 + ε) which is justified since
1/(1 − ε) ≤ 1 + ε for all ε ≤ 2/3. Also without loss of generality, we will sometimes say that the
approximation is 1 + Θ(ε) since our advice bounds are asymptotic and we can replace ε by ε/c for some
suitable c.

A. Borodin, D. Pankratov, and A. Salehi-Abari 8:3

all items fit into the knapsacks without violating weight constraints and the total value of
packed items is as large as possible. In the uniform MKP, capacities of the bins are equal,
and, are taken to be 1 without loss of generality. Thus, the dual bin packing problem can be
seen as the uniform MKP with all values being 1. It is known [9] that the dual bin packing,
and consequently the MKP, is strongly NP-hard even for m = 2, which effectively rules out
an FPTAS for these problems. This is in contrast to the standard knapsack problem and the
makespan problem for a fixed number of machines where FPTAS are possible. Significant
progress in the study of the MKP was made by Kellerer [15] who showed that the uniform
MKP admits a PTAS. Subsequently, Chandra and Khanna [9] gave a PTAS for the general
MKP. Clearly, these results also give PTAS algorithms for the dual bin packing problem.
However, the PTAS algorithms provided by Kellerer, and Chekuri and Khanna, are relatively
complicated algorithms with a technically detailed analysis of correctness. Our goal is to
provide a simple online advice algorithm for the dual bin packing problem based on a simpler
PTAS for the dual bin packing problem . Thus, as a first step, we provide a simpler PTAS
and analysis for the case of the dual bin packing problem. In the second step, we use the
simplified PTAS to derive our result for the tape advice-complexity of the online dual bin
packing. One of the key steps in our PTAS is a dynamic programming algorithm for the
dual bin packing problem with few distinct weights instead of the IP solver as in Kellerer’s
PTAS or the LP solver as in Chekuri and Khanna. This dynamic programming algorithm is
essentially the same as the one used in the solution of the makespan problem with a bounded
number of different processing times. Our PTAS and its analysis are self-contained and easy
to follow. Our work highlights one of the important aspects of simple algorithms, namely,
they are usually easier to modify and adapt to other problems and situations. In particular,
we are able to easily adapt our simple PTAS to the setting of online tape-advice algorithms.

2 Preliminaries

The dual bin packing instance is specified by a sequence of n item weights w1, w2, . . . , wn
and m ∈ N bins, where wi ∈ (0, 1]. The goal is to pack a largest subset of items into m bins
such that for each bin the total weight of items placed in that bin is at most 1. The problem
can be specified as an integer program as follows (notation [n] stands for {1, . . . , n}):

max.
n∑
i=1

m∑
j=1

xij

subj. to
n∑
i=1

xijwi ≤ 1 for all j ∈ [m]

m∑
j=1

xij ≤ 1 for all i ∈ [n]

xij ∈ {0, 1} for all i ∈ [n], j ∈ [m]

The online First Fit algorithm FF constructs a solution by processing items in the given
order w1, w2, . . . , wn and placing a given item into the first bin into which it fits. First Fit
Increasing algorithm FFI first orders the items by increasing weight. Let σ : [n]→ [n] be the
corresponding permutation. Then FFI runs FF on the items in the order given by σ, i.e.,
wσ(1) ≤ wσ(2) ≤ · · · ≤ wσ(n). It is easy to see that FF has an unbounded approximation (i.e.,

SOSA 2018

8:4 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

competitive) ratio whereas Coffman et al [14] show that FFI has a 4/3 approximation ratio
for the dual packing problem. Note that the weights only enter the above integer program
as constraints and are not part of the objective function. Thus, it is easy to see that the
items in an optimal solution are, without loss of generality, a prefix of wσ(1), wσ(2), . . . , wσ(n)
packed into appropriate bins.

Throughout this paper we shall always write n to mean the number of input items, m
the number of bins, and s the maximum bit size of an input item (s can be thought of as the
“word size” of a computer, on which the given input sequence should be processed).

An online algorithm ALG is said to achieve a competitive ratio c for a maximization
problem if there exists a constant α such that for all input sequences I we have OPT(I) ≤
cALG(I) + α, where ALG(I) is the value of the objective that the algorithm achieves on I
and OPT(I) is the value achieved by an offline optimal solution. If α ≤ 0, we say that ALG
achieves a strict competitive ratio c.

3 A Simple PTAS for the Dual Bin Packing Problem

Fix ε > 0. In what follows, for simplicity we shall assume that ε is “nice”, i.e., 1/ε is an
integer, mε is an integer, etc. We note that an arbitrary small nice ε can always be found.
Let S = {i | wi ≤ ε} be the set of small input items, and let L = {i | wi > ε} be the set of
large input items. The goal is to pack as many items from S ∪ L into m bins as possible.
Our first observation is that if the FFI algorithm fills m bins (i.e., does not allow any more
items to be packed) using only small items then it already achieves a 1 + ε approximation.

I Lemma 1. Suppose that when the FFI algorithm terminates, it has filled all bins with
items of weight at most ε. Then FFI achieves 1 + ε approximation ratio on this instance.

Proof. If FFI packs all items then it clearly finds an optimal solution. Suppose that FFI
rejects some items. Let w be the smallest weight of a rejected item. Thus the total remaining
free space among all m bins is < wm in the FFI packing. Thus, OPT can pack at most
m− 1 more items, since it can only add items of weight ≥ w. Let N be the number of items
packed by FFI. Then we have

OPT
FFI <

N +m

N
≤ m/ε+m

m/ε
= 1 + ε,

where the second inequality follows from N ≥ m/ε, since the FFI packing uses only items of
weight ≤ ε. J

Thus, the whole difficulty in designing a PTAS for this problem lies in the handling
of large items. If FFI terminates before packing all of S, then the condition of Lemma 1
holds and hence from now on, we consider the case when FFI packs all of S. In this case
an optimal solution is to pack all of S together with some subset of smallest items from L.
The strategy for our algorithm is to pack a largest subset F of L that still leaves enough
room to pack all of S. This means that w(F) ≤ m−w(S), but we also want to pack all of S
efficiently. This can be guaranteed by leaving slightly more room while packing F . Namely,
w(F) ≤ m(1− ε)− w(S) guarantees that all of S can be packed efficiently after packing F .

I Lemma 2 (Kellerer [15]). Suppose that we have a packing of F ⊆ L such that w(F) ≤
m(1 − ε) − w(S). Then running FFI with the packing of F as a starting point results in
packing all of S.

A. Borodin, D. Pankratov, and A. Salehi-Abari 8:5

Proof. Initially, we have w(F) ≤ m(1 − ε) − w(S) ≤ m(1 − ε). Thus, by the pigeonhole
principle there is a bin with ≥ ε free space. Thus, we can pack the first item s1 from S. Now,
we have w(F) ≤ m(1− ε)−w(S) ≤ m(1− ε)−w(s1), i.e., w(F) +w(s1) ≤ m(1− ε). Again,
by the pigeonhole principle there is a bin with ≥ ε free space, so we can pack the second
item from S, and so on. J

I Remark. Note that the argument in the above lemma does not use the increasing property
of FFI. Therefore, even FF can be used to complete the partial packing F with all of S.

The next lemma shows that the extra “breathing room” that we leave to guarantee an
efficient packing of S does not hurt the approximation ratio.

I Lemma 3. Let F be the largest subset of L that can be packed into m bins with total weight
≤ m(1− ε)− w(S). Then

OPT
|F |+ |S| ≤ 1 + 3ε.

Proof. If F = L then we are done. Otherwise, let w > ε be the smallest weight of an item
from L \F . Then |S| ≥ w(S)/ε ≥ w(S)/w and |F | ≥ m(1−ε)−w(S)

w . Thus, |F |+ |S| ≥ m(1−ε)
w .

The total free space after packing F ∪ S is ≤ εm. Thus, OPT can pack at most εm
w more

items than |F |+ |S|. Combining all of the above, we have

OPT
|F |+ |S| ≤

|F |+ |S|+ εm/w

|F |+ |S| ≤ m(1− ε)/w + εm/w

m(1− ε)/w = 1
1− ε ≤ 1 + 3ε,

where the last inequality holds for small ε; i.e., ε ≤ 2/3. J

We shall refer to the problem of finding F as in the above lemma as the LFP (“the large
F problem”).

I Remark. Suppose that F is an approximation to the LFP with an additive εm term, i.e.
|F | ≥ OPTLFP − εm. Then an argument similar to the one used in the above lemma shows
that F together with S still gives 1 + Θ(ε) approximation to the original dual bin packing
problem. Thus, it suffices to find a good enough F .

Before we show how to find a good approximation to the LFP, we show how to solve
the dual bin packing optimally in polynomial time when the number of distinct weights of
the input items is fixed. As previously stated, this follows from the known PTAS for the
makespan problem. (See section 10.2 of the Vazirani text [17].)

I Lemma 4. We can solve the dual bin packing problem optimally in time O(n2km) where
k is the number of distinct weights of the input items.

Proof. The algorithm is a simple dynamic programming. Let w1, . . . , wk be the distinct
weights appearing in the input. The entire input sequence can be described by a k-tuple
(n1, . . . , nk), where ni is the number of items of weight wi and n =

∑
i ni. Note that the

number of different possible k-tuples with n items is O(nk). Let K be the set of distinct
k-tuples such that each of its element fits entirely in a single bin, i.e., (`1, . . . , `k) such
that

∑
i `iwi ≤ 1. The dynamic programming table D is going to be indexed by the

number of available bins m′ and a possible k-tuple (`1, . . . , `k) such that 0 ≤ `i ≤ ni.
The value D[(`1, . . . , `k),m′] is going to indicate the maximum number of items that can
be packed from the input sequence described by the state (`1, . . . , `k) in m′ bins. Let
L(`1, . . . , `k) = {(`′1, . . . , `′k) | ∀i 0 ≤ `′i ≤ `i}. An optimal solution to the subproblem indexed

SOSA 2018

8:6 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

by (`1, . . . , `k) and m′ consists of a packing of some element from L into a single bin, and
packing the remaining input items into m′ − 1 bins:

D[(`1, . . . , `k),m′] = max
(`′1,...,`′k)∈K∩L(`1,...,`k)

∑
i

`′i +D[(`1 − `′1, . . . , `k − `′k),m′ − 1].

The base case is given by the states where either m′ = 0 or
∑
i `i = 0, in which case we

cannot pack any items. The overall runtime of this algorithm is O(n2km) since the dynamic
programming table has O(nkm) entries and each entry can be computed in time O(nk) with
appropriate preprocessing of the input data. As usual, this dynamic program can be easily
modified to return the actual packing rather than the number of packed items. J

Let L′ be the subset of the smallest items from L such that |L′| is as large as possible
subject to w(L′) ≤ m(1 − ε) − w(S). We would like to find F by running the dynamic
programming algorithm on L′. Unfortunately, L′ can have too many distinct inputs. The
idea is to group items of L′ into few groups depending only on ε, reassign all weights of
elements within a single group to the weight of the largest element in that group, and run
the dynamic programming algorithm on the new problem instance. Then, we will need to
argue that the resulting solution is an additive εm approximation to the LFP.

Let ` = |L′|. We can assume ` > m otherwise there is a trivial way to pack ` items
into m bins. Assume for simplicity that mε is an integer and that k = `/(mε) is also an
integer. Then, we split L′ into k groups of mε elements each. Let wj1 ≤ wj2 ≤ · · · ≤ wj` be
the weights of elements in L′. Define Li to be the ith group consisting of items of weights
wj1+(i−1)mε , . . . , wjimε . Reassign the weights of elements in Li to be wjimε . Let w̃ denote the
modified weights. Thus, we get an instance with k distinct weights, where k = `/(mε). Note
that ` ≤ m/ε since we are dealing with large items ≥ ε. We conclude that k ≤ 1/ε2. Thus,
we can solve this instance in time O(n2/ε2

m) by Lemma 4. Let F ′ denote this solution. Let
F denote an optimal solution to LFP with the original weights. Then, we have the following.

I Lemma 5. F ′ is feasible with respect to weights w and |F ′| ≥ |F | − εm.

Proof. Since F ′ is feasible with weights w̃ and w̃ ≥ w, we immediately conclude that F ′ is
feasible with respect to w. Rather than directly showing |F ′| ≥ |F | − εm, we show how to
construct a set F ′′ from F such that |F ′′| ≥ |F | − εm and F ′′ is feasible with respect to w̃.
This will prove the lemma, since F ′ is a maximum cardinality set that satisfies the feasibility
constraints (i.e., |F ′| ≥ |F ′′|). To construct such F ′′, we can simply drop all items from
F ∩ L1 and replace all items from F ∩ Li by arbitrary items from Li−1 for i ≥ 2. Note that
|F ′′| = |F \ L1| ≥ |F | − εm. Moreover, F ′′„ is feasible with respect to w̃ since we are always
replacing large weight items by smaller weight items. J

This completes the argument that approximately solving the LFP using the reassigned
weights and the dynamic programming followed by FFI on small items gives a 1 + Θ(ε)
approximation. The running time of the dynamic programming is O(n2/ε2

m). One can
run FFI in O(n logn + nm) time. The overall running time of our PTAS algorithm is
O(n2/ε2

m+ n logn), which is clearly polynomial when ε is fixed. Algorithm 1 describes this
PTAS.

Summarizing, in this section we proved the following theorem.

I Theorem 6. Algorithm 1 is a PTAS for the dual bin packing problem.

A. Borodin, D. Pankratov, and A. Salehi-Abari 8:7

Algorithm 1 Our PTAS for the dual bin packing.
procedure Dual Bin Packing PTAS(w1 ≤ · · · ≤ wn,m, ε)

Let S = {i | wi ≤ ε}
if FFI(S,m) packs < |S| items then return FFI(S,m)
Let L′ = {|S| + 1, . . . , |S| + `} be the indices of the largest subset of L such that

w(L′) ≤ m(1− ε)− w(S)
Let k = `/(mε)
Let w̃ denote new weights where items with indices {|S|+ (i− 1)mε+ 1, . . . , |S|+ imε}

all receive weight w|S|+imε
Use the algorithm of Lemma 4 to obtain a packing of items F ′ with modified weights w̃
Regard F ′ as a packing with the original weights
Run FF on S with the packing of F ′ as a starting point

return the resulting packing

4 Advice Complexity of the Online Dual Bin Packing Problem for
Bounded Bit Size of Input Items

In this section, we consider the online version of the dual bin packing problem in the tape-
advice model. Let s be the maximum bit-size of an input item weight. Then the input
bit-length is O(sn). Based on the PTAS in Algorithm 1, we develop an online algorithm that
achieves 1 + ε approximation to the dual bin packing problem with O

(
s+logn
ε2

)
bits of advice.

Before we prove the main result of this section, we need to modify Lemma 1 to work in the
online setting. Recall that Lemma 1 detects when FFI is already successful enough that
we don’t need to do any extra work to obtain a 1 + ε approximation. An online algorithm
does not have the ability to sort the input items, thus we would like to obtain a version of
Lemma 1 that detects when FF obtains a 1 + ε approximation. The restricted subsequence
first fit (RSFF) algorithm given by Renault [16] is what we need. Let W = w1, . . . , wn be
the sequence of weights given to the online algorithm. For a value η we define Wη to be the
subsequence (wi | wi ≤ η). The RSFF algorithm finds the largest value of η such that FF
packs all items in Wη and then returns FF(Wη). Without loss of generality, we may assume
that η is one of the wi.

I Lemma 7 (Implicit in Renault [16]). If RSFF identifies an η such that η ≤ ε then RSFF
achieves a 1 + ε approximation ratio.

By replacing FFI with RSFF in the first step of Algorithm 1, we obtain the main result
of this section.

I Theorem 8. There is an online algorithm achieving a 1 + Θ(ε) strict competitive ratio
for the dual bin packing problem with O

(
s+logn
ε2

)
bits of advice, where s is the maximum

bit-size of an input item.

Proof. The advice is obtained by slightly modifying the PTAS from Section 3. At first, the
oracle writes down the value of η identified by running RSFF on the input sequence. For
later convenience, we rename η by w̃0. This takes O(s) bits of advice. This is analogous to
running FFI in the original PTAS. Recall that the PTAS creates k ≤ 1/ε2 groups of large
input items Li for i ∈ [k] with the corresponding rounded weights w̃i for i ∈ [k]. The oracle
appends |Li| together with w̃i for i ∈ [k] to the advice string. This completes the specification
of the advice string. The length of the advice string is O(s+ k log |Li|+ ks) = O

(
s+logn
ε2

)
.

SOSA 2018

8:8 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

It is left to see that with this advice string an online algorithm can compute a 1 + Θ(ε)
approximate solution to the instance of the dual bin packing problem. Observe that if
w̃0 ≤ ε then by Lemma 7 the solution obtained by running FF on all items of weight ≤ w̃0
achieves 1 + ε approximation, since this gives us exactly the packing produced by RSFF.
From now on, we consider the case w̃0 > ε. Then an optimal solution might use large items.
Recall that the PTAS creates a solution to the rounded instance encoded by (|L1|, . . . , |Lk|)
and weights (w̃1, . . . , w̃k), replaces this solution with actual weights of the corresponding
items and fills the rest in FF fashion with the rest of the items (see the remark immediately
following Lemma 2). Thus, knowing (|L1|, . . . , |Lk|) and weights (w̃1, . . . , w̃k) from the advice,
our online algorithm can reserve place holders for items in bins according to the dynamic
programming solution. We refer to this space as the preallocated space, and we refer to the
complement of it as the remaining space. For example, if dynamic programming solution says
that bin 1 contains `i items of weight w̃i then the online algorithm reserves `i slots of weight
w̃i in bin 1. The preallocated space in bin 1 is

∑
i `iw̃i and the remaining space in bin 1 is

1−
∑
i `iw̃i. Now, the algorithm is ready to process the items in the online fashion. When

the algorithm receives an input item of weight ≤ ε it packs it in the remaining space in FF
fashion. When the algorithm receives an item of weight ∈ (w̃i−1, w̃i], it packs it into the first
available preallocated slot of weight w̃i. By the construction of advice, we are guaranteed
that when the algorithm is done processing the inputs, all preallocated slots are occupied
and all small items are packed. By Theorem 6 this solution is a 1 + ε approximation. J

5 Advice Complexity of the Online Dual Bin Packing Problem for
General Weights

In this section we show that the online dual bin packing without any restrictions on s requires
Θε(n) advice to approximate OPT within 1 + ε. Observe that the upper bound O(n/ε)
immediately follows from the result of Renault [16] in the per-request advice model. A
somewhat stronger upper bound, (1−Ω(ε))n, follows by observing that the dual bin packing
belongs to the advice complexity class AOC defined by Boyar et al. [6] and then using the
results from [6]. Thus, we only need to prove that in the case of unrestricted s the lower
bound of Ωε(n) holds. For sufficiently small ε, we show a nearly matching lower bound
of (1 − O(ε log(1/ε)))n = Ωε(n) in the tape-advice model. We establish our lower bound
by providing a reduction (that preserves the precision, advice and competitive ratio) from
an online problem known to require a lot of advice to the dual bin packing problem. The
starting point is the binary separation problem defined by Boyar et al. [7].

I Definition 9 (Boyar et al. [7]). The binary separation problem is the online problem with
input I = (n1, y1, . . . , yn) consisting of n = n1 + n2 positive values which are revealed one
by one. There is a fixed partitioning of the set of items into a subset of n1 large items and
a subset of n2 small items, so that all large items are greater than all small items. Upon
receiving an item yi, an online algorithm for the problem must guess if y belongs to the set
of small or large items. After the algorithm has made a guess, it is revealed whether the
guess was correct. The goal is to maximize the number of correct guesses.

Boyar et al. [7] establish a lower bound on the advice needed to achieve competitive ratio
c for the binary separation problem.

I Theorem 10 (Boyar et al. [7]). Assume that an online algorithm solves the binary separation
problem on sequences I = (n1, y1, . . . , yn) where the yi are n bit numbers and does so using

A. Borodin, D. Pankratov, and A. Salehi-Abari 8:9

at most b(n) bits of advice while making at most r(n) mistakes. Set α = (n − r(n))/n. If
α ∈ [1/2, 1) then b(n) ≥ (1−H(α))n where H(p) = p log(1/p) + (1− p) log(1/(1− p)).

Moreover, Boyar et al. [7] provide a reduction from the binary separation problem to the
standard bin packing problem to show that achieving competitive ratio < 9/8 requires an
online algorithm to receive Ω(n) bits of advice. A simple adaptation of this reduction allows
us to derive a similar result for the dual bin packing problem. We present the details below
for completeness.

I Theorem 11. An online algorithm achieving a competitive ratio 1 + ε for the dual bin
packing problem with unrestricted bit size of input weights requires (1−O(ε log(1/ε)))n = Ωε(n)
bits of advice, provided ε < 1/19.

Proof. We show how to reduce the binary separation problem to the dual bin packing
problem while preserving the size of advice and the competitive ratio.

Let ALG be an algorithm for the dual bin packing problem that achieves competitive
ratio c and uses advice b(n). Let I = (n1, (y1, . . . , yn)) be an input to the binary separation
problem. We define ALG′ for solving I as follows. ALG′ constructs an instance of the dual
bin packing problem in the online fashion. It will use decisions and the advice string of ALG
to make decisions about its own inputs yi. Let δmax > δmin > 0 be small enough numbers.
Suppose that we have a strictly decreasing function f : R → (δmin, δmax). ALG′ invokes
ALG with n bins and 2n items. ALG′ constructs input weights to ALG in three phases.
Phase 1 (preprocessing): the first n1 weights are defined as 1/2 + δmin. This is generated

by ALG′ prior to any inputs seen from I.
Phase 2 (online): when yi arrives, ALG′ defines a new input item to ALG of weight 1/2−

f(yi). In this phase ALG′ uses decisions of ALG to handle its own inputs. If ALG
packs the current item into a bin that contains 1/2 + δmin item from phase 1 then ALG′
declares yi to be large. Otherwise, ALG′ declares the item to be small. We shall refer
to 1/2− f(yi) weight items corresponding to truly small (large) yi as small items (large
items).

Phase 3 (post processing): once ALG′ has processed the entire sequence I, it appends
weights 1/2 + f(yi) for all truly small yi from I. We refer to these weights as the
complementary weights of small items.

First observe that OPT for the constructed instance of the dual bin packing packs all 2n
items into n bins: the n1 weights corresponding to the large items can be paired up with the
n1 items from phase 1, and the n2 weights corresponding to the small items can be paired
up with their complementary weights from phase 3 in the remaining n2 = n− n1 bins.

Clearly, the advice complexity and the precision of the input items are preserved by this
reduction. Thus, to finish the argument we need to analyze how many mistakes ALG′ does.
We bound the number of mistakes in terms of the number of items unpacked by ALG. We
define the following variables.

Let p1 be the number of items from phase 1 that were not packed by ALG.
Let `2 be the number of large items from phase 2 that were not packed by ALG.
Let s2 be the number of small items from phase 2 that were not packed by ALG.
Let p3 be the number of items from phase 3 that were not packed by ALG.

The overall number of items that were not packed by ALG is p1 + `2 + s2 + p3 ≤ c−1
c 2n.

Observe that the complementary weights can only be paired up with the corresponding small
item weights, and phase 1 items can only be paired up with large or small phase 2 items.

The number of bins containing phase 1 items is n1 − p1. The number of bins containing
phase 3 items is n2 − p3. Due to the above observations, all these bins have to be distinct.

SOSA 2018

8:10 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

Thus, the number of bins that do not contain either phase 1 or phase 3 items is p1 + p3. Call
these the leftover bins. The are two types of mistakes that ALG′ can do: (1) it classifies
a large item as being small, and (2) it classifies a small item as being large. Since large
items can only be paired either with phase 1 items or be placed in the leftover bins, type
(1) mistakes occur only when large items are placed in the leftover bins or when large items
remain unpacked. There can be at most 2(p1 + p3) large items in the leftover bins. Thus,
ALG′ makes at least g1 := n1 − p1 − 2(p1 + p3) − `2 correct guesses for large items. A
type (2) mistake happens only when a small item is paired up with a phase 1 item. Since
there can be at most n1 − p1 − g1 = 2(p1 + p3) + `2 phase 1 items not paired up with
large items, there can be at most that many type (2) mistakes. Thus, ALG′ makes at
least g2 = n2 − s2 − 2(p1 + p3)− `2 correct guesses for small items. Overall, ALG′ makes
g1 + g2 = n1 + n2− s2− p1− 4(p1 + p3)− 2`2 ≥ n1 +n2− 5(p1 + `2 + s2 + p3) ≥ n− 10 c−1

c n

good guesses. The fraction of good guesses is then n−10(c−1)n/c
n = 10−9c

c . By Theorem 10, it
follows that b(n) ≥ (1−H((10− 9c)/c))n. Observe that (10− 9c)/c ∈ (1/2, 1) provided that
c ∈ (1, 20/19). In particular, if ε is a small positive constant, then achieving a competitive
ratio c = 1 + ε for the dual bin packing problem requires (1 − H((1 − 9ε)/(1 + ε)))n =
(1−H(O(ε)))n = (1−O(ε log(1/ε)))n = Ωε(n) bits of advice. J

All in all, the dual bin packing problem admits short advice in case of s bounded by a
slowly growing function of n, but requires long advice when s is unrestricted. This is akin
to the distinction between the polynomial time vs pseudo-polynomial time in the regular
Turing machine world. One of the conceptual contributions of this paper is a demonstration
that “pseudo-short” advice and “truly short” advice are provably different. To make this
idea precise, we introduce two natural classes of efficient advice problems.

I Definition 12. The class EAC (efficient advice complexity) consists of online problems P
such that an input to P is given by n items, and the advice complexity of achieving 1 + ε

competitive ratio for P is Oε(poly(logn)).
Denoting the maximum bit size of an input item to P by s, we define a superclass WEAC

(weakly efficient advice complexity) of EAC to consist of those online problems P such that
the advice complexity of achieving 1 + ε competitive ratio for P is Oε(poly(logn, s)).

EAC class is defined by analogy with communication complexity where O(poly(logn))
communication is considered efficient (see Babai et al. [2]). WEAC class is also natural. The
advice length bound of algorithms for WEAC problems suggests that the advice can consist
of a short description of combinatorial parameters of a problem (e.g., length of a stream,
index into a stream, which take O(logn) bits to describe) plus a small (polylogarithmic)
number of actual data items from the stream.

In light of the above definitions and the main result of this section and Section 4, the
dual bin packing problem witnesses the following class separation theorem.

I Theorem 13. WEAC6=EAC.

6 Conclusion

We presented a simple PTAS for the dual bin packing problem. Although a PTAS for a more
general multiple knapsack problem was already known, our PTAS is arguably simpler to
state and analyze. Its simplicity helped us to adapt it to the tape-advice model of online
algorithms. We showed that a 1 + ε competitive ratio for the dual bin packing problem
is achievable with O

(
s+logn
ε2

)
bits of tape advice. We showed that the dependence on s

A. Borodin, D. Pankratov, and A. Salehi-Abari 8:11

is necessary to obtain such small advice, as the dual bin packing problem requires Ωε(n)
when ε > 0 is small enough, s is unrestricted, and m is part of the input. We introduced
two natural advice complexity classes EAC and WEAC. The conceptual distinction between
the classes WEAC and EAC is similar to the Turing machine world distinction between
pseudo-polynomial time and strongly polynomial time. EAC captures problems that can be
approximated to within 1 + ε with Oε(poly logn) bits of advice, whereas WEAC captures
problems that can be approximated to within 1 + ε with Oε(poly(logn, s)) bits of advice.
Our results on the dual bin packing problem imply that WEAC 6=EAC.

One immediate question left open by our work is whether there is an small advice
algorithm for small s which requires less advice bits. More specifically, does there exist
a 1 + ε approximation using oε(s) + Oε(logn) advice bits for s = o(n)? In this paper we
exclusively studied the dual bin packing in the regime of obtaining 1 + ε competitive ratio
when ε is small and m is part of the input. Are there sublinear advice algorithms for large
ε, e.g., ε = 1/2? Also, does the dual bin packing admit sublinear advice algorithms when
m is a small constant? It is also interesting to see whether or not results for the dual bin
packing problem can be extended to more general problems such as when bins have different
capacities, and more generally to the multiple knapsack problem, while preserving conceptual
simplicity. Last and perhaps a most important question is whether or not there exist online
algorithms with efficiently computable (i.e., linear or even online computable as in [12, 4])
advice for the dual bin packing problem achieving a constant competitive ratio.

Acknowledgements. We thank the anonymous reviewers, especially reviewer 2, for their
helpful comments.

References
1 S.F Assmann, D.S Johnson, D.J Kleitman, and J.Y.-T Leung. On a dual version of the

one-dimensional bin packing problem. J. of Algorithms, 5(4):502 – 525, 1984. URL:
http://www.sciencedirect.com/science/article/pii/019667748490004X, doi:http:
//dx.doi.org/10.1016/0196-6774(84)90004-X.

2 Laszlo Babai, Peter Frankl, and Janos Simon. Complexity classes in communication com-
plexity theory. In Proc. of the 27th Symp. on Found. of Comput. Sci., SFCS ’86, pages
337–347, 1986.

3 Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič, and To-
bias Mömke. On the advice complexity of online problems. Algorithms and Computation,
pages 331–340, 2009.

4 Allan Borodin, Denis Pankratov, and Amirali Salehi-Abari. On conceptually simple al-
gorithms for variants of online bipartite matching. In WAOA’17: The 15th workshop on
approximation and online algorithms (To appear), 2017.

5 Joan Boyar, Lene M Favrholdt, Christian Kudahl, Kim S Larsen, and Jesper W Mikkelsen.
Online algorithms with advice: a survey. ACM SIGACT News, 47(3):93–129, 2016.

6 Joan Boyar, Lene M. Favrholdt, Christian Kudahl, and Jesper W. Mikkelsen. The advice
complexity of a class of hard online problems. Theory of Comput. Sys., 2016.

7 Joan Boyar, Shahin Kamali, Kim S. Larsen, and Alejandro López-Ortiz. Online bin packing
with advice. Algorithmica, 74(1):507–527, Jan 2016.

8 Joan Boyar, Kim S. Larsen, and Morten N. Nielsen. The accommodating function: A
generalization of the competitive ratio. SIAM J. on Comput., 31(1):233–258, 2001.

9 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM J. on Comput., 35(3):713–728, 2005.

SOSA 2018

http://www.sciencedirect.com/science/article/pii/019667748490004X
http://dx.doi.org/http://dx.doi.org/10.1016/0196-6774(84)90004-X
http://dx.doi.org/http://dx.doi.org/10.1016/0196-6774(84)90004-X

8:12 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

10 J. Csirik and V. Totik. Online algorithms for a dual version of bin pack-
ing. Discrete Applied Mathematics, 21(2):163 – 167, 1988. URL: http:
//www.sciencedirect.com/science/article/pii/0166218X88900522, doi:http://dx.
doi.org/10.1016/0166-218X(88)90052-2.

11 Marek Cygan, Lukasz Jez, and Jirí Sgall. Online knapsack revisited. Theory Comput. Sys.,
58(1):153–190, 2016.

12 Christoph Dürr, Christian Konrad, and Marc Renault. On the Power of Advice and Ran-
domization for Online Bipartite Matching. In Proc. of ESA, pages 37:1–37:16, 2016.

13 Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. Online computation with
advice. Theoretical Computer Science, 412(24):2642–2656, 2011.

14 Edward G. Coffman Jr., Joseph Y.-T. Leung, and D. W. Ting. Bin packing: Maximizing
the number of pieces packed. Acta Inf., 9:263–271, 1978.

15 Hans Kellerer. A polynomial time approximation scheme for the multiple knapsack problem.
In Proc. of RANDOM-APPROX, volume 1671, pages 51–62. Springer, 1999.

16 Marc P Renault. Online algorithms with advice for the dual bin packing problem. Central
Eur. J. of Op. Res., pages 1–14, 2016.

17 Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

http://www.sciencedirect.com/science/article/pii/0166218X88900522
http://www.sciencedirect.com/science/article/pii/0166218X88900522
http://dx.doi.org/http://dx.doi.org/10.1016/0166-218X(88)90052-2
http://dx.doi.org/http://dx.doi.org/10.1016/0166-218X(88)90052-2

	Introduction
	Preliminaries
	A Simple PTAS for the Dual Bin Packing Problem
	Advice Complexity of the Online Dual Bin Packing Problem for Bounded Bit Size of Input Items
	Advice Complexity of the Online Dual Bin Packing Problem for General Weights
	Conclusion

