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Abstract

Latent space models for network formation assume that nodes possess latent at-
tributes that determine their propensity to connect. We propose a new model for
network formation, ranking networks, in which these attributes are rankings over
some space of alternatives. Such rankings may reflect user preferences, rele-
vance/quality judgements, etc., while ranking networks capture correlations of,
say, user preferences across a social network. We present preliminary theoretical
and empirical analyses of structural properties of such networks, and develop al-
gorithmic approximations to help efficiently predict these properties. Empirical
results demonstrate the quality of these approximations.

1 Introduction

Network formalisms offer a powerful tool for studying the interactions of entities in complex sys-
tems. Of special interest in network science is the development of network formation models that
explain the emergence of common structural properties of real-world networks [2, 34]. Recent
work has focused on modeling the role of both known and hidden attributes of nodes in forming
networks—the intuition being that each node possesses attributes (e.g., geographical location [35]
or social position [14, 7]) that determine the chance that any pair of nodes become connected. Ex-
amples of such models include spatial networks [4], random geometric graphs [31], latent space
models [14, 7], and multiplicative attribute graphs [19].

Most of these models take attributes to be binary, real-valued, or integral. Surprisingly, little work
has studied attribute-based network formation in which the underlying attributes correspond to rank-
ings over some space of options. Such rankings may represent the preferences of agents over some
set of alternatives (e.g., products, political candidates, jobs) or their subjective opinions about the
quality or relevance of certain items (web pages, sports teams). Because of the increasing availability
of ranked data due to recommender systems, web search, online surveying, and other applications, a
deeper understanding of the possible interactions between ranked data and network formation seems
imperative. In this work, we develop and begin a preliminary analysis of ranking networks, in which
each node in the network possesses a ranking, and the similarity between two nodes’ rankings de-
termines their affinity or probability of connection. Such networks can be used for a variety of
purposes, but we are especially interested in models where rankings reflect agent preferences over
a some space of options. We discuss the extent to which we can leverage the structure of ranking
networks to address algorithmic questions that arise in the analysis of networks. For instance, what
topological network properties emerge under such a model? How to model parameters (including
the ranking distribution and similarity metric) influence these properties? And can such structural
properties be predicted efficiently?

Ranking network models can be deployed in a variety of contexts. It is widely acknowledged that the
behaviours of individuals are correlated over the social networks [10, 15]; and correlated preferences
offer one possible explanation of this phenomenon. Ranking networks can help predict or elicit
the preferences of specific individuals to develop more efficient recommender, social choice and
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advertising mechanisms. They may also have application in information retrieval and topic modeling
over the web: given some common set of attributes (e.g., topics, tags), each node (e.g., web page,
photo) may have a “relevance ranking” over those attributes. A ranking network can capture the
correlation of such relevance rankings given the structure of underlying information network (and
may help improve the efficiency of recently developed comparison-based interactive search methods
[16]).The predictive power of ranking networks might be also harnessed for link prediction [24,
22]—to help predict future interactions between entities—or link mining—to help infer unobserved
links between entities [13].

We introduce a probabilistic model for the formation of ranking networks, in which each entity pos-
sesses a ranking over a set of alternatives. The similarity of their rankings determines the chance
of connectivity between two individuals. We first analyze some general topological properties of
ranking networks (e.g., connectivity conditions, graph diameter, degree distribution, edge density,
clustering coefficient). We then study distance-based ranking networks in which similarity is mea-
sured using standard ranking distance metrics, examine a few additional properties in this setting,
and describe several algorithmic approximations to efficiently predict structural properties of the
resulting network. Our approximation methods are also applicable for learning model parameters
and inference problem. We present preliminary empirical results using the Mallows’ φ-model [27],
a distributional model of rankings used widely in psychometrics and machine learning, and well-
suited to modeling user preferences. These results confirm the efficiency and predictive accuracy of
our computational approximations.

2 Related Work

The pioneering random graph model, G(n, p), of Erdős and Rènyi [11] assumes an edge between
any pair of nodes occurs with probability p. Other seminal work includes the preferential attachment
[2] and small-world [34] models. Since then network formation models have drawn considerable
attention, with a variety of models proposed to capture structural properties of real-world networks
[29, 3, 30].One can roughly divide these model into two categories. Static models (e.g., Erdős-Rènyi,
small world) specify the network using simple static properties (e.g., probability of edge occurrence),
whereas dynamic models (e.g., preferential attachment) involve some dynamic “growth” process by
which nodes and edges are added to a network.

Our ranking network model is a random, static model. It is also falls within the class of spatial (or
latent space) networks [4, 14] in which nodes have a set of real-valued, binary, or integer-valued
latent variables, with the probability of an edge forming between two nodes determined by their
attributes. The Waxman random graph model [35], often used to model the computer networks, dis-
tributes n nodes uniformly at random on the plane, with two nodes connected with probability that
decreases exponentially with their Euclidean distance. Hoff et al. [14] develop a similar model for
inferring latent variables on social networks—nodes are points in a d-dimensional Euclidean “social
space.” The random dot product model [36] is somewhat distinct in that the distance between nodes
is given by the inner product of their position vectors. The hidden variable model [6, 7] is a gener-
alization of the Waxman model: nodes are equipped with a hidden (real-valued or integer) random
variable drawn independently from a specified distribution. Two nodes are connected according to a
symmetric probability function over node attributes. Serrano et al.[33] slightly modify this approach
to introduce a general class of models based on a hidden metric space where nodes—located at a
specific point in this space—are connected with a probability determined by a connection proba-
bility function defined over node distances. The multiplicative attribute graphs (MAG) model [19]
generalizes the Kronecker graph model [20], assigning each node a vector of categorical attributes,
and using a link-affinity matrix to capture connection probabilities based on attribute interactions.

Within spatial network formation models, recent research has addressed inference and learning
of latent attributes and social network structure. Hoff et al. [14] develop inference and learning
techniques to infer node locations in a fixed d-dimensional Euclidean “social space.” Using the MAG
model, Kim and Leskovec [17] develop a scalable variational expectation maximization method for
learning model parameters given network structure and node attributes, and inferring node’s latent
variables and model parameters when the network structure is observed. Kim and Leskovec [18]
extend this to allow nodes to have multiple latent characteristics. Other work on learning on graphs
includes collective classification [32] and active learning over network data [5, 26].

2



3 The Formation of Ranking Networks

We first provide background on latent space models for network formation. We then define ranking
networks by building upon these models and discuss some general theoretical properties. Finally,
we examine the special case of distance-based ranking networks, analysing some of its theoretical
properties and developing computational approximations to estimate these properties.

3.1 Latent Space Network Models

Latent space or hidden variable network models [6] generally assume a set n nodes, where each
node i is associated with a latent variable hi. This represents some feature (or feature vector) of
the node or individual in question. The parameters of such a model are given by a parameter vector
θ (we discuss model-specific parameterizations below). A random undirected graph is generated
by assuming: (1) a distribution ρ(h|η) specifying the probability that an arbitrary node takes on
value h; and (2) a symmetric connection probability function, c(h, h

′
), where c(hi, hj) denotes

the probability that edge eij forms between nodes i and j given their variable values. A common
variant of this model defines the connection probability using the relative distance dij between the
values hi and hj in some metric space. In this case, we assume a function c(d) : [0,∞) → [0, 1]
that maps distances into connection probabilities. We generally assume distance-based connection
functions below. A canonical example of such a connection probability is Waxman’s [35] function
c(d) = βe−

d
d0 , widely used for modeling computer network topologies, where β controls edge

density and d0 represents a “typical” distance between nodes. Another is c(d) = (1 + d
β )−α, used

for modeling social networks [7]. Here β controls the average node degree while α > 1 determines
the degree of homophily. Let λ denote the (vector of) model parameters governing connection
function c(·) and θ = (η,λ) the vector of all parameters of a latent space model.

We now describe certain structural properties that emerge under latent space models. Because we
will deal with discrete ranking spaces below, we assume latent variables are discrete. First, note that
edge density, i.e., the probability of an occurring edge between two arbitrary nodes, is given by:

E(θ) =
∑
h,h
′

ρ(h|η)ρ(h
′
|η)c

(
d(h

′
, h)|λ

)
. (1)

As a result, the expected number of edges of a random node is given by
(
n
2

)
E(θ). The probability

of edge between a node i with observed value hi and a random alternative node j is:

D(hi,θ) =
∑
h
′

ρ(h
′
|η)c

(
d(h

′
, hi)|λ

)
. (2)

Thus, the expected degree of a node with value hi is given by (n− 1)D(hi,θ). Note that E(θ) can
be rewritten as:

E(θ) =
∑
h

ρ(h|η)D(h,θ). (3)

The exact degree distribution P (k,θ) is:

P (k,θ) =
∑
h

ρ(h|η)G(h, k|θ), (4)

where G(h, k|θ) is the probability that a node with value h has k neighbours:

G(h, k|θ) =

(
n− 1

k

)
D(h,θ)k (1−D(h,θ))n−1−k . (5)

The clustering coefficient of a node i is the fraction of the pairs of neighboring nodes that are them-
selves connected. The expected clustering coefficient for a node i with value hi can be computed
by:

C(hi,θ) =
1

D(hi,θ)2

∑
h
′
,h
′′

ρ(h
′
)ρ(h

′′
)c(d(hi, h

′
))c(d(hi, h

′′
))c(d(h

′
, h
′′

)) (6)

One can compute the average clustering by 〈C(θ)〉 =
∑
h ρ(h,η)C(h,θ).
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3.2 Ranking Networks: A General Model

We adapt the general latent space network model to setting where the latent attributes are rankings
over some set of alternatives. For instance, nodes might represent individuals with attributes reflect-
ing their preferences over some set of products, services, political candidates, etc. We assume a finite
set of alternatives (or options) A = {a1, . . . , am} and a set of nodes N = {1, . . . , n}. Each node
i has a ranking (or strict total order) over A, denoted by �i (weaker notions, e.g., preorders, partial
orders, can be accommodated, though some details of our model require modification). Let Ω(A)
denote the set of all m! rankings over A. Our latent variables are rankings r drawn from Ω(A). We
assume that each node i’s ranking ri is drawn independently from some (parameterized) distribution
ρ(r|η) over Ω(A). We also assume a ranking distance metric d : Ω(A)2 → R which measures
similarity between rankings. Finally, a connection probability function c(d) : [0,∞) → [0, 1] de-
termines the probability that two nodes i, j are connected given the distance d(ri, rj) between their
rankings. We now detail each of these three components of our model.

Distance Metric on Rankings. We use the “similarity” of two rankings to determine their distance,
which will be used below to determine connection probabilities. A variety of well-known distance
metrics for rankings can be used [9]. We briefly describe several common distance metrics. A
natural set of distances are “dp distances”, where dp(r, r

′
) =

∑m
i=1 |r(ai)−r

′
(ai)|p for p ∈ [1,∞).

The well-known footrule (p = 1) and Spearman (p = 2) distances are instances of this. Hamming
distance is another natural model, while Kendall’s τ distance is used, e.g., in psychometrics and
social choice, where

dτ (r, r
′
) =

∑
k 6=l

I[r(ak) > r(al) and r
′
(ak) < r

′
(al)]. (7)

Here dτ measures the number of pairwise swaps needed to transform r to r′. As the ranking space
Ω(A) is discrete with finite size m!, there are finitely many realizable distances. It is easy to see
that, for any r, r

′
: 0 ≤ dτ (r, r

′
) ≤

(
m
2

)
and dτ (r, r

′
) ∈ N ∪ {0}.

Ranking Distributions. The ρ(r|η) component of our ranking network model accommodates ar-
bitrary ranking distributions. Distributional models of rankings developed in psychometrics and
statistics, and now widely used in machine learning and IR [23], include Mallows, Plackett-Luce,
Bradley-Terry, and many others (see [28] for an overview). We use the Mallows’ φ-model in our em-
pirical experiments. It is characterized by a “modal” reference ranking σ and a dispersion parameter
φ ∈ [0, 1), with the probability of a ranking r given by ρ(r|σ, φ) ∝ φdτ (r,σ).

Connection Probability Function. With ranking-based distance metrics in hand, we adopt standard
connection functions for latent-space models (see above). We assume c(d) is integrable and strictly
decreasing. We can derive sufficient conditions for connectivity of a ranking network:

Theorem 3.1 Assume a ranking model (ρ(r|η), c(d|λ)). The induced ranking network is connected
with high probability (i.e., with probability 1− o(1) where o(1)→ 0 and n→∞) if

dM (m) < c−1

(
log n

n

∣∣∣λ) ,
where dM (m) is the maximum possible distance under d given m alternatives.1

This can be used to derive suitable conditions for connectivity of specific models. For instance, using
the τ distance metric and Waxman connection function c(x|α, d0) = αe

x
d0 , the emerging ranking

network will be connected with high probability if
(
m
2

)
< −d0 ln logn

αn .

The small world effect is a commonly observed property of real-world networks: the diameter (or
longest shortest path between any pair of nodes) is small, as is the average shortest path length [1].

1We assume that m is fixed and independent of the number n of individuals. This is consistent with the
applications we have in mind (e.g., social choice, recommender systems, interactive search, etc.). We plan to
extend our analysis to the case where m depends on n. Omitted proofs can be found in a longer version of the
paper at http://www.cs.toronto.edu/˜abari/papers/RankingNetworks.pdf
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Ranking networks exhibit these properties: the diameter D(θ) and the average shortest path 〈l(θ)〉
can be approximated and (often) bounded by:

D(θ) ≤
⌈

log(n)

log(n− 1) + log c(dM (m)|λ)

⌉
; 〈l(θ)〉 ≤ log(n)

log(n− 1) + log c(dM (m)|λ)
. (8)

These approximations are detailed in the appendix of a longer version of this paper; and our em-
pirical results confirm these properties and the tightness of these bounds. Ranking networks also
possess the diameter-shrinking property of real-world networks [21], where diameter (and average
shortest path) shrinks as the network grows:

Theorem 3.2 Fixm and assume ρ(r|η) distributes probability mass on more than one ranking. The
asymptotic diameter of ranking networks is 2 (as n→∞).

These and other structural properties of ranking networks can be computed readily if model param-
eters are given. However, due to the discrete nature of ranking space, computation can be extremely
intensive, even for relatively smallm, due to the combinatorial size of ranking space. This motivates
the development of easy-to-compute approximations for the special class of distance-based ranking
models, while studying properties that emerge among networks in this class. Our approximation
methods also can applied for efficient learning of model parameters.

3.3 Distance-Based Ranking Models

Distance-based ranking distributions [12, 28] have ranking probabilities that decrease with increas-
ing distance from some modal or reference ranking σ ∈ Ω(A):

ρ(r|σ, ω) =
1

ψ(ω)
exp(−ωd(r, σ)), (9)

where ω ∈ [0,∞) is a dispersion parameter and ψ(ω) is a normalizing constant. As ω →∞, ρ be-
comes concentrated at the reference ranking σ, whereas for ω = 0, ρ is the uniform distribution. The
Mallows φ-model above is an example of such a model (with dispersion φ = e−ω and distance dτ ).
While we focus on unimodal models, mixtures of such models offer additional modeling flexibility
[25].

In this section, we assume that ρ (our distance-based ranking distribution) and c (our distance-based
connection function) use the same distance metric. For instance, when using dτ as our distance
measure, the ranking distribution is the Mallows φ-model and the probability of connection between
two nodes is determined based on this same distance.

We first observe that, as ω →∞, ranking networks converge on the well-studied ER random graph
model G(n, p) with p = c(0|λ). We can also bound the probability that a node with a ranking r is
connected to a randomly chosen node:

Theorem 3.3 Given reference ranking σ and a distance-based ranking model, for any fixed θ and
any r ∈ Ω(A):

D(σM ,θ) ≤ D(r,θ) ≤ D(σ,θ),

where σM is some ranking at maximum distance from σ.2

This theoretical observation has a natural interpretation: individuals that possess more probable or
more “popular” rankings have greater odds of connecting with others (hence have higher expected
degree). This is not surprising given the nature of distance-based ranking models. In the context
of social networks, this is one possible contributing factor to the intuition that people with more
“popular” preferences tend to have more friends and social interactions than those with uncommon
preferences, i.e., preference popularity governs social popularity. From a different perspective, one
can use observed node degree to draw inferences about its ranking: higher degree is predictive of
more common preferences. (i.e., close to the modal ranking). This can be exploited to support
efficient estimation/learning of the reference ranking, the ranking distribution, and preferences of
specific individuals. Using Thm. 3.3, it is straightforward to bound E(θ).

2If more than one ranking has maximum distance, one such ranking minimizes D (not necessarily all).
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Proposition 3.4 Given a distance-based ranking model, E(θ) is bounded by

D(σM ,θ) ≤ E(θ) ≤ D(σ,θ),

where σM is some ranking at maximum distance from σ.

The upper bound D(σ,θ) can be computed efficiently (in O(m2) time):

D(σ,θ) = D̂(m,ω,η) =
1

ψ(ω)

dM (m)∑
k=0

nke
−ωkc(k|λ), (10)

where dM (m) is the maximum possible distance for given d when there are m alternatives (e.g.,
for Kendall-τ , dM (m) =

(
m
2

)
) and ni is the number of rankings of distance i from an arbitrary

fixed ranking. We can efficiently compute ni for any d either in closed form or using dynamic
programming. For instance, ni can be computed (once) for Kendall’s τ in O(m3) time via:

T (j, k) =


1, k = 0 and j ≥ 1

0, k >
(
m
2

)
T (j, k − 1) + T (j − 1, k), k ≤ j − 1

T (j, k − 1) + T (j − 1, k)− T (j − 1, k − j), k > j − 1

(11)

If d is symmetric in the sense that ni = ndM (m)−i for all i ≤ dM (m), a lower bound D(σM ,θ)

can be computed in O(m2) time:

D(σM ,θ) = Ď(m,ω,λ) =
1

ψ(ω)

dM (m)∑
k=0

nke
−ωkc(dM (m)− k|λ) (12)

We have empirically observed that D(r,θ) (usually) decreases as d(r, σ) increases. In other words,
the distance of an individual’s ranking to the reference ranking is negatively correlated with its
degree. Define the linear function

D̃(d,θ) =

(
1− d

dM (m)

)
D(σ,θ) +

(
d

dM (m)

)
D(σM ,θ). (13)

We can approximate D(r,θ) by D̃(d(r, σ),θ), which can be used to effectively approximately
other structural network properties. For example, the edge density E and degree distribution P ,
respectively, be approximated by:

Ẽ(θ) =
1

ψ(ω)

dM (m)∑
k=0

nke
−ωkD̃(k,θ), and (14)

P̃ (k,θ) =

(
n−1
k

)
ψ(ω)

dM (m)∑
i=0

nie
−ωiD̃(i,θ)k

(
1− D̃(i,θ)

)n−1−k
. (15)

By pre-computing ni values, these functions can be computed in O(m2) time (cf. the O((m!)2)
time required for naive exact computation). For large m, even this might problematic; but if c(·,λ)
is convex, one can (loosely) approximate D and edge density E in O(1) time by:

˜̃D(x,θ) =

(
1− x

dM (m)

)
c

(
dM (m)e−ω

1 + e−ω

)
+

x

dM (m)
c

(
dM (m)

1 + e−ω

)
, and (16)

˜̃E(θ) =
1

1 + e−ω
c

(
dM (m)e−ω

1 + e−ω

)
+

e−ω

1 + e−ω
c

(
dM (m)

1 + e−ω

)
. (17)

Our approximations Ẽ(θ) and D̃(d(r, σ),θ) can also be exploited for efficient model learning.
Exact evaluation of the likelihood function of a ranking network when dealing with missing data
(i.e., when some node rankings are unobserved) has computation of edge density E(θ) and average
connection probability D(r,θ) as its main bottlenecks. Of course, one can learn model parameters
using methods iterative methods such as EM, but direct evaluation of (an approximation of) the
likelihood function using these approximations may be support more efficient learning and inference
(preliminary tests seem to support this, but this is the topic of ongoing research).
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Figure 1: Mean and std. dev. of observed diameters (30 instances) for various ω and n, and its approximation
D̃ (m = 3, α = 2, γ = 0.8, and β = 2).
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Figure 2: (a) Mean observed edge density E(θ) (30 instances) and its approximation Ẽ(θ); (b) mean squared
error of approximate edge density; varying number of options m, dispersion ω (n = 1000, α = 2, β = 2,
γ = 0.8).
4 Numerical Case Study with Mallows Models

We describe experiments on a version of our ranking network model, using the Mallows φ-model
under various parameter settings. We compare various structural properties (e.g., degree distribution,
edge density, diameter) of the resulting networks with the predictions of our approximation methods.

Experimental Setup. We use a variant of the connection probability of [33]:

c(d|λ) = γ

(
1 +

d

β

)−α

. (18)

Here β controls average degree and α > 1 determines the extent of homophily. We introduce
γ ∈ (0, 1] to control the probability of connecting nodes with the same ranking (to account for the
discrete nature of ranking space). Unless noted, all experiments are run on networks with n = 1000
nodes, α = 2, β = 2 and γ = 0.8, while varying m. For each parameter setting, we report results
over 30 random ranking networks.

Diameter. We first examine the effect of n and ω on the diameter of the emergent ranking networks,
and compare observed diameter to our approximation D̃ (see Eq. 8). We fix m = 5. Fig. 1 confirms
that diameter shrinks as n increases. Unsurprisingly, diameter decreases with increasing ω (i.e.,
more uniform distributions give larger diameter), largely due to the increased edge density caused
by increasing ω (see below). D̃ provides a reasonable upper bound of diameter for any value of ω,
with bounds that are very tight when n reaches 500.

Edge Density. The effect of m and ω on edge density is illustrated in Fig. 2. Fig. 2(a) demonstrates
that edge density increases with ω but decreases with m (compare boxes on the solid lines). Error
bars are very tight (and barely observable). Our approximation Ẽ (Eq. 14) is relatively close to the
observed edge density, especially when ω is relatively small (ω ≤ 0.5) or large (ω ≥ 4).

To better quantify the accuracy of our approximation, we compute the mean squared error (MSE)
between the actual edge density and our approximation over 30 randomly generated ranking net-
works. Fig. 2(b) shows that MSE is relatively low with a maximum of roughly 0.014 for m = 6,
ω = 2. MSE first increases and then decreases with ω. Moreover, MSE increases with m especially
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Figure 3: The mean cumulative degree distribution (30 instances) and its approximation, varying ω (m = 5,
n = 1000, α = 2, β = 2, γ = 0.8).

for ω = 1, 2. This suggests that, for large m and small ω, our edge density approximation should be
used cautiously. Refined approximations that account for the value of ω are being explored.

Degree Distribution. Fig. 3 shows the impact of ω on the degree distribution of ranking networks
under the Mallows model, as well as the effectiveness of our approximation P̃ (Eq. 15). The figure
shows cumulative degree distribution to reduce noise in the plots: given degree distribution P (k, n),
the cumulative degree distribution is Pc(k, n) =

∑n
l=k P (l, n) (i.e., probability that a node n has

the degree d ≥ k). The mean cumulative degree distribution is shown for various values of ω with
m = 5 and n = 1000. The expected degree increases with ω; e.g., with ω = 0, most of nodes have
degree around 100, whereas for ω = 4, most nodes have degree around 800 (since mean degrees
is nE). However, variance in the degree distribution initially increases as ω increases from 0 but
then decreases. For example, variance is low at ω = 0 and ω = 4, but high for ω = 1 and ω = 2.
Interestingly, with ω = 1 and ω = 2, the the cumulative degree distribution shows several distinct
modes in the degree distribution. The relation between these modes and community structure in
ranking networks is something that remains to be explored.

Fig. 3 also shows that the approximate degree distribution P̃ is reasonably close to actual observed
degree distribution when ω ≤ 0.5 and ω ≥ 4, though it fails to account for the distinct modes,
especially for ω = 1, 2. Once again, more accurate approximations (sensitive to ω) may be possible.

5 Concluding Remarks and Future Work

We have introduced ranking networks, a class of attribute-based (or latent-space) network formation
models in which node attributes are rankings over a set of options, and connections are formed
between nodes based on the similarity of their underlying rankings. We studied some structural
properties (e.g., diameter, connectivity, edge density) of these networks, and showed that our model
possesses some characteristics of real-world networks (e.g., shrinking diameter).

This model is a starting point for the broader investigation of the impact of rankings, and prefer-
ences in particular, on network formation. Future directions include: the analysis of more realistic
ranking distributions (e.g., mixture models); extensions of our model that account for heterogene-
ity/heterophily; and modeling the dynamics and mutability of the underlying rankings themselves in
response to network connections. Of practical importance is studying the extent to which rankings,
such as preferences, play a role in shaping connections in real-world networks, and how the induced
correlations can be best exploited in applications such as recommender systems, advertising, social
choice and voting, web search and information retrieval.
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This Appendix first presents proofs of theoretical analyses in Section A. Then, Section B discusses
the rational behind the proposed approximations. Finally, we discuss the details of dynamic pro-
gramming methods used to compute the number of rankings with a specific Kendall-distance from
a fixed ranking in Section C.

A Proofs

Proof of Theorem 3.1 We note that the connection probability between two nodes with rankings r
and r

′
can be written as c(d(r, r

′
),λ) = c(dM (m),λ) + (c(d(r, r

′
),λ) − c(dM (m),λ)). So we

can consider that the network formation – under ranking network model – occurs in two phases.
First any two nodes get connected to each other with fixed probability of c(dM (m),λ) (similar to
random graph model G(n, p) with p = c(dM (m),λ)). Then, any pair of nodes with ranking r and
r
′

get connected with the probability c(d(r, r
′
),λ) − c(dM (m),λ). So if we find some conditions

under which the network generated after phase 1 is almost surely connected, over the second phase,
the connectivity property should holds since only some other edges might be added to the network
without removal of any existing edge.

It is well-studied that the random graph G(n, p) is almost surely connected when p > logn
n [8].

Since the first phase is actually the random graph model G(n, p) with p = c(dM (m),λ). So we
require

c(dM (m)|λ) >
log n

n

Since c(.|λ) is a strictly decreasing function, we have

dM (m) < c−1

(
log n

n

∣∣∣λ)
Proof of Theorem 3.2 Our proof has following steps: first we will show that asymptotic diameter
should be at most 2 by demonstrating that for any two arbitrary nodes are connected through at least
another nodes in the network. Second, we show that each node can not be connected to all other
nodes in the network, thus resulting the asymptotic diameter of more than 1. Then, the asymptotic
diameter has to be 2.

For the first step, we start by the observation that connection probability of any two nodes regardless
of their rankings is at least p = c(dM (m)|λ). We note that c(dM (m)|λ) > 0 for any distance metric
d and m ≥ 2; so p > 0. Let denote the probability that i and j has not common neighbour k by
P (not i ∼ k ∼ j). Similarly let P (not i ∼ S ∼ j) denote the probability that i and j has not any
element of set S as a common neighbour. It is straight forward to see that P (not i ∼ S ∼ j) ≤
1−p2. Similarly, due to independence of connections, one can observe that P (not i ∼ N \{i, j} ∼
j) ≤ (1− p2)n−2. Since p > 0, limn→∞ P (not i ∼ N \ {i, j} ∼ j) = 0. This implies that i and j
have to have at least one common neighbour when n→∞. So the shortest path between these two
nodes have at least length of 2. As i and j where two arbitrary nodes, any two pair of nodes at least
have the shortest path of length 2. So the asymptotic diameter of the network is at most 2.

We now show that asymptotic diameter is greater than 1. We prove this by contradiction. We assume
that the asymptotic diameter is 1. As the mass probability is not only on one ranking, so there are
at least two rankings rm and rM such that 0 < ρ(rm) ≤ ρ(rM ) and also ρ(rm) ≤ ρ(r) ≤ ρ(rM )
for any r with ρ(r) > 0. Let nrm and nrM denote the number of nodes with rankings rm and rM
when there are n nodes. We consider sufficiently large n such that nrm , nrM > 0. As rm and rM
are distinct, d(rm, rM ) > 0. So, c(d(rm, rM )) < c(0). Let P (rm, nrM ) denote the probability that
one node with rm ranking get connected to all nodes with rM rankings. It is straightforward to see
that P (rm, nrM ) = c(d(rm, rM ))nrM . We note when n → ∞, nrM → ∞ when m is fixed. As
c(d(rm, rM )) < c(0) ≤ 1, limn→∞ P (rm, nrM ) = 0. So there should be some nodes with rM that
a node with rm is not directly connected to. Therefore, the asymptotic diameter can not be 1. Based
on this and the first step proof that asymptotic diameter is ≤ 2. The asymptotic diameter must be 2.

Proof of Theorem 3.3. We first note that for ω = 0, the proof is trivial: When ω = 0, for any
r ∈ Ω(A), ρ(r|θ) = 1

m! . Hence,
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D(r,θ) =
∑

r′∈Ω(A)

ρ(r
′
|θ)c

(
dτ (r

′
, r)|θ

)
=

1

m!

∑
r′∈Ω(A)

c
(
dτ (r

′
, r)|θ

)

=
1

m!

dM (m)∑
i=0

nic (i|θ) ,

where ni represent the number of rankings with the distance i from a specific ranking and dM (m) is
the maximum possible distance under deployed distance metric d. We note that the value of D(r,θ)
is same for any r ∈ Ω(A). So, for this case, for any r ∈ Ω(A), we have

D(σM ,θ) = D(r,θ) = D(σ,θ),

where σM is a ranking with maximum possible distance to σ.

To prove the inequities for the case ω ∈ (0,∞), we first let k(r)
ij denote the number of rankings with

the distance of i to the reference ranking σ and the distance of j to an arbitrary ranking r. Once
again, let ni represent the number of rankings with the the distance i from a specific fixed ranking,
where i ∈ {0, · · · , dM (m)}. So, we can write

D(r,θ) =
∑

r′∈Ω(A)

ρ(r
′
|θ)c

(
d(r

′
, r)|θ

)

=
1

ψ(ω)

dM∑
i=0

dM∑
j=0

k
(r)
ij e
−ωic(j|θ). (19)

We also observe that for any fixed r ∈ Ω(A),

∀j ∈ {0, . . . , dM},
dM∑
i=0

k
(r)
ij = nj and ∀i ∈ {0, . . . , dM},

dM∑
j=0

k
(r)
ij = ni. (20)

We first focus on proving D(r,θ) ≤ D(σ,θ) side of the inequality. By using Eq. 19, we can
view D(r,θ) as a function over matrix K(r), denoted by f

(
K(r)

)
, with the constraints stated in

Eq. 20. Now, we explore for which feasible instance of K(r), f(K(r)) is maximized. Using Lemma
A.1, it follows that f

(
K(r)

)
is maximized with a diagonal matrix K(r∗) with k(r∗)

ii = ni for all
i ∈ {0, . . . , dM}. This implies that kr

∗

00 = n0 = 1; so there is one ranking, say r
′
, which has the

distance of 0 to both r∗ and σ. Obviously, this can be only true when r∗ = r
′

= σ (based on identity
of indiscernibles property of metric distance). It follows that σ maximize the function D(r,θ) when
θ is fixed. Hence, for any r ∈ Ω(A): D(r,θ) ≤ D(σ,θ).

We now focus on D(σM ,θ) ≤ D(r,θ) side of the inequality. By using Eq. 19, we can view
D(r,θ) as a function over matrix K(r), denoted by f

(
K(r)

)
, with the constraints stated in Eq. 20.

Using Lemma A.3, it follows that r∗ which minimizes f
(
K(r)

)
must have distance dM (m) to the

reference ranking. So r∗ = σM must be one of those rankings with the maximum distance to σ.

Lemma A.1 Assume f(X) =
∑d
i=0

∑d
j=0 aijxij and aij = 1

ψ(ω)e
−ωic(j) where ω ∈ (0,∞)

and c(x|λ) is a decreasing connection probability function. Consider this constraint maximization
problem:

max
X∈R(d+1)×(d+1)

f(X)

subject to: ∀i ∈ {0, . . . , d},
d∑
j=0

xij = ci

∀j ∈ {0, . . . , d},
d∑
i=0

xij = cj

∀i, j ∈ {0, . . . , d}, xij ≥ 0 (21)
where ∀i, ci is a positive constant and given. The solution to this maximization problem is the
diagonal matrix X∗ such that ∀i, x∗ii = ci.
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Proof of Lemma A.1. We prove by contradiction. The proof strategy is as follows. We assume that
X∗ maximizes the objective function f(.) but is not diagonal. Then, by slight modification of some
elements in X∗, we create matrix Y∗ and show that it is indeed feasible solution. Afterwards, we
show that f(Y∗) > f(X∗) which contacts the maximality of X∗.

Let X∗ maximizes the objective function f(.) and assume it is not diagonal. Consider this decom-
position X∗ = L∗ + D∗ + U∗ where L∗, D∗, and U∗ are strictly lower triangular, diagonal, and
strictly upper triangular matrices respectively. Since X∗ is not diagonal, at least, one of L∗ and U∗

must have none-zero elements. Moreover, from Lemma A.2, we can conclude that both L∗ 6= 0
and U∗ 6= 0. We can define none-empty set S = {(i, j)|u∗ij > 0 and j > i}. We consider the
lexicographical ordering on S such that

(i, j) < (k, l)⇔ i < k or (i = k and j < k).

There should be (im, jm) which is the minimum element in S based on our lexicographical ordering.
Based on the definition of S and the minimality of (im, jm) in S, we observe that u∗imjm > 0 and
u∗kim = 0 for any k < im. Hence,∑

k<im

x∗kim = 0 and x∗imjm > 0. (22)

From two constraints (see Eq. 21) related two row im and column im, we can write:∑
j

x∗imj =
∑
k

x∗kim = cim =⇒
∑
j

x∗imj −
∑
k

x∗kim = 0 =⇒

∑
j 6=im

x∗imj −
∑
k 6=im

x∗kim = 0 =⇒
∑
j 6=im

x∗imj −

(∑
k<im

x∗kim +
∑
k>im

x∗kim

)
= 0

=⇒ x∗imjm −

∑
k<jm

x∗kim +
∑
k>jm

x∗kim

 ≤ 0

Using this and Eq. 25, it follows that

0 < x∗imjm ≤
∑
k>im

x∗kim =⇒
∑
k>im

x∗kim > 0.

Hence, there is (at least) k > im such that x∗kim > 0. We can define

δ = min(x∗kim , x
∗
im,jm).

Note that δ > 0 since both x∗kim and x∗im,jm are positive. Let

B = {(im, im), (im, jm), (k, im), (k, jm)},

using δ, we can define matrix Y∗ out of X∗ as follows:

y∗ij =



x∗ij , (i, j) /∈ B
x∗imim + δ, (i, j) = (im, im)

x∗imjm − δ, (i, j) = (im, jm)

x∗kim − δ, (i, j) = (k, im)

x∗kjm + δ, (i, j) = (k, jm)

(23)

It is almost straightforward to see that Y∗ satisfies all constraints stated in Eq. 21. We can first
observe that y∗ij ≥ 0 for all (i, j) ∈ B mostly because of the way that δ is defined and δ > 0.
Moreover, y∗ij = x∗ij ≥ 0 for all (i, j) /∈ B. Since Y∗ is different than X∗ only in four corners of a
box determined by coordinates inB, to show that Y∗ satisfy all other constraints, it is only sufficient
to demonstrate the constraints related to rows im and k, and columns im and jm are satisfied (note
that as the other rows and columns are unchanged compared to X∗, their corresponding constraints
should be already satisfied.). From definition of Y∗ in Eq. 23, we observe that whenever δ is added
to the original Xij , it is subtracted from another element in the same row and another element in the
same column; this has guaranteed that the constraints are still met.
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As Y∗ is a feasible solution, we can write:

f(Y∗)− f(X∗) =
∑
i

∑
j

y∗ijaij −
∑
i

∑
j

x∗ijaij =
∑

(i,j)∈B

aij(y
∗
ij − x∗ij)

= aimimδ − aimjmδ − akimδ + akjmδ

=
δ

ψ(ω)

[(
e−ωimc(im)− e−ωimc(jm)

)
−
(
e−ωkc(im)− e−ωkc(jm)

)]
=

δ

ψ(ω)

(
e−ωim − e−ωk

)
(c(im)− c(jm))

Since jm > im and c(.) is decreasing function, c(im) − c(jm) > 0. Also, since im < k and
ω ∈ (0,∞), we have e−ωim − e−ωk > 0. Hence,

δ

ψ(ω)

(
e−ωim − e−ωk

)
(c(im)− c(jm)) > 0 =⇒ f(Y∗) > f(X∗),

which contradicts the optimality of X∗. So X∗ has to be diagonal. Using diagonal property of X∗
and constraints stated in Eq. 21, we have x∗ii = ci and for each i 6= j ∈ {1, · · · , d}, x∗ij = 0.

Lemma A.2 Assume matrix X satisfies the constraints in Eq. 21 and decomposes into diagonal
matrix D, strictly upper triangular matrix U and strictly lower triangular matrix L (i.e., X =
L + D + U):

L 6= 0⇐⇒ U 6= 0

Proof of Lemma A.2 We first prove the L 6= 0 =⇒ U 6= 0 direction and then the other direction.
If L 6= 0 then there exist (at least) one (i, j) such that lij > 0 and i > j (note that lij = 0 for all
j ≥ i based on the strictly lower triangular property of L). Hence, we can define the non-empty set
S = {(j, i)|lij > 0 and i > j}. As S has finite number of elements, we can order elements of S
lexicographically such that (j, i) > (k, l) if and only if j > k or (j = k and i > l). Let (jm, im)
be the minimum element in S based on our lexicographical ordering. Based on the definition of S
and the minimality of (jm, im) in S, we observe that limjm > 0 and ljmk = 0 for any k < jm.
Hence, ∑

k<jm

xjmk = 0 and ximjm > 0. (24)

From constraints stated in Eq. 21, we have:∑
i

xijm =
∑
k

xjmk = cjm =⇒
∑
i

xijm −
∑
k

xjmk = 0 =⇒

∑
i 6=jm

xijm −
∑
k 6=jm

xjmk = 0 =⇒
∑
i 6=jm

xijm −

∑
k<jm

xjmk +
∑
k>jm

xjmk

 = 0

=⇒ ximjm −

∑
k<jm

xjmk +
∑
k>jm

xjmk

 ≤ 0

Using this and Eq. 24, it follows that

0 < ximjm ≤
∑
k>jm

xjmk =⇒
∑
k>jm

xjmk > 0.

Hence, there is (at least) l > jm such that xjml > 0. So, ujml > 0 =⇒ U 6= 0.

The similar type of argument can be made for the other direction of U 6= 0 =⇒ L 6= 0. If
U 6= 0 then there exist (at least) one (i, j) such that uij > 0 and i < j (note that uij = 0 for all
j ≤ i based on the strictly upper triangular property of U). Hence, we can define the non-empty set
T = {(i, j)|uij > 0 and i < j}. As T has finite number of elements, we can order elements of T
lexicographically such that (i, j) > (k, l) if and only if i > k or (i = k and j > l). Let (im, jm)
be the minimum element in T based on our lexicographical ordering. Based on the definition of T
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and the minimality of (im, jm) in T , we observe that uimjm > 0 and ukim = 0 for any k < im.
Hence, ∑

k<im

xkim = 0 and ximjm > 0. (25)

From constraints stated in Eq. 21, we have:∑
j

ximj =
∑
k

xkim = cim =⇒
∑
j

ximj −
∑
k

xkim = 0 =⇒

∑
j 6=im

ximj −
∑
k 6=im

xkim = 0 =⇒
∑
j 6=im

ximj −

(∑
k<im

xkim +
∑
k>im

xkim

)
= 0

=⇒ ximjm −

∑
k<jm

xkim +
∑
k>jm

xkim

 ≤ 0

Using this and Eq. 25, it follows that

0 < ximjm ≤
∑
k>im

xkim =⇒
∑
k>im

xkim > 0.

Hence, there is (at least) k
′
> im such that xk′ im > 0. So, lk′ im > 0 =⇒ L 6= 0.

Lemma A.3 Assume f(X) =
∑d
i=0

∑d
j=0 aijxij and aij = 1

ψ(ω)e
−ωic(j) where ω ∈ (0,∞) and

c(x|λ) is a decreasing connection probability function. Consider this constraint integer program-
ming minimization problem:

min
X∈(N∪{0})(d+1)×(d+1)

f(X)

subject to: ∀i ∈ {0, . . . , d},
d∑
j=0

xij = ci

∀j ∈ {0, . . . , d},
d∑
i=0

xij = cj

∀i, j ∈ {0, . . . , d}, xij ≥ 0 (26)

where ∀i, ci is a positive integer constant. Specifically, it is given that c0 = 1 and cd ≥ 1. Matrix
X∗ is the solution to this minimization problem with x∗0d = c0 = 1 and x∗id = 0 for i < d.

Proof of Lemma A.3 The proof is by contradiction and its general idea is as follows. We assume
that X∗ is a feasible solution and minimizes the objective function f(.) but does not satisfy x∗0d =
c0 = 1 and x∗id = 0 for i < d. Then, by slight modification of some elements in X∗, we create
matrix Y∗ and show that it is indeed feasible solution. Afterwards, we show that f(Y∗) < f(X∗)
which contacts the minimality of X∗.

Assume that X∗ minimizes the objective function f(.) but does not satisfy x∗0d = c0 = 1 and
x∗id = 0 for i < d. So, based on the row constraint of

∑d
j=0 x

∗
0j = c0 = 1, there should be l < d

such that x∗0l = 1. Similarly, as x∗0d = 0 and
∑d
i=0 x

∗
id = cd ≥ 1, there should be k > 0 such that

x∗kd ≥ 1. Let
B = {(0, l), (0, d), (k, l), (k, d)},

, we can define matrix Y∗ as follows:

y∗ij =



x∗ij , (i, j) /∈ B
0, (i, j) = (0, l)

1, (i, j) = (0, d)

x∗kd − 1, (i, j) = (k, d)

x∗kl + 1, (i, j) = (k, l)

(27)
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It is almost straightforward to see that Y∗ satisfies all constraints stated in Eq. 26. We can first
observe that y∗ij ≥ 0 and y∗ij ∈ N ∪ {0} for all (i, j) ∈ B. Moreover, y∗ij = x∗ij ≥ 0 for all
(i, j) /∈ B. Since Y∗ is different than X∗ only in four corners of a box determined by coordinates
in B, to show that Y∗ satisfy all other constraints, it is only sufficient to demonstrate the constraints
related to rows 0 and k, and columns l and d are satisfied (note that as the other rows and columns
are unchanged compared to X∗, their corresponding constraints should be already satisfied.). From
definition of Y∗ in Eq. 27, we observe that whenever 1 is added to the original x∗ij , it is subtracted
from another element in the same row and another element in the same column; this has guaranteed
that the constraints are still met.

As Y∗ is a feasible solution, we can write:

f(Y∗)− f(X∗) =
∑
i

∑
j

y∗ijaij −
∑
i

∑
j

x∗ijaij =
∑

(i,j)∈B

aij(y
∗
ij − x∗ij)

= a0d − a0l − akd + akl

=
1

ψ(ω)

[
(c(d)− c(l))−

(
e−ωkc(d)− e−ωkc(l)

)]
=

δ

ψ(ω)

(
1− e−ωk

)
(c(d)− c(l))

Since d > l and c(.) is decreasing function, c(d)− c(l) < 0. Also, since 0 < k and ω ∈ (0,∞), we
have 1− e−ωk > 0. Hence,

1

ψ(ω)

(
1− e−ωk

)
(c(d)− c(l)) < 0 =⇒ f(Y∗) > f(X∗),

which contradicts the optimality of X∗. So matrix X∗ must satisfy x∗0d = c0 = 1 and x∗id = 0 for
i < d.

Proof of Proposition 3.4 The proof is almost trivial and follows for Thm. 3.3 and Eq. 3:

D(σM ,θ) ≤ D(r,θ) ≤ D(σ,θ)

=⇒
∑

r∈Ω(A)

ρ(r|θ)D(σM ,θ) ≤
∑

r∈Ω(A)

ρ(r|θ)D(r,θ) ≤
∑

r∈Ω(A)

ρ(r|θ)D(σ,θ)

=⇒ D(σM ,θ)
∑

r∈Ω(A)

ρ(r|θ) ≤ E(θ) ≤ D(σ,θ)
∑

r∈Ω(A)

ρ(r|θ)

=⇒ D(σM ,θ) ≤ E(θ) ≤ D(σ,θ)

B Rational Behind Approximations

We here explain the main idea and rational behind our approximation methods.

Approximation to Network Diameter. We know that two nodes have the lowest chance of con-
nectivity when their rankings have the maximum possible distance dM (m). In other words, the
probability that any pair of nodes get acquainted is at least c(dM (m),λ). We also note that by in-
creasing the edge probability, the diameter (or the average shortest path length) does not increase
(actually, most often it decreases). So one can bound the diameter D(θ) (or the average shortest
path length 〈l(θ)〉) by the diameter D

′
(n, p) (or the average shortest path length 〈l′(n, p)〉) of the

random graph G(n, p) with fixed p = c(dM (m),λ). So D(θ) ≤ D
′
(n, p) and 〈l(θ)〉 ≤ 〈l′(n, p)〉

with p = c(dM (m),λ).

To give more clear picture, one can assume that the network formation – under ranking network
model– runs in two phases. First any two nodes get connected to each other with fixed probability of
c(dM (m),λ) (similar to random graph model) which results in diameter, say, D

′
(n, p) and average

shortest path length, say, 〈l′(n, p)〉. Then, any pair of nodes with ranking r and r
′

get connected
with the probability c(d(r, r

′
),λ) − c(dM (m),λ). The later phase results in final diameter D(θ)

and average shortest path length 〈l(θ)〉. Obviously adding more edge in the second phase can not
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increase the diameter and the average shortest path. So D(θ) ≤ D
′
(n, p) and 〈l(θ)〉 ≤ 〈l′(n, p)〉

with p = c(dM (m),λ).

One can approximate the diameterD
′
(n, p) and the average shortest path length 〈l′(n, p)〉 inG(n, p)

model by

D
′
(n, p) ≈

⌈
log(n)

log(n− 1)p

⌉
and 〈l

′
(n, p)〉 ≈ log(n)

log(n− 1)p
.

Setting p = c(dM (m),λ) and using the inequalities D(θ) ≤ D
′
(n, p) and 〈l(θ)〉 ≤ 〈l′(n, p)〉, we

have shown that

D(θ) ≤
⌈

log(n)

log(n− 1) + log c(dM (m)|λ)

⌉
and 〈l(θ)〉 ≤ log(n)

log(n− 1) + log c(dM (m)|λ)
.

˜̃E Approximation. Let p(d(r, σ) = i|ω, σ) denote the probability that the drawn ranking r from
the distance-based ranking model ρ(r|ω, σ) has distance i to the reference ranking σ. We can note
that for i ∈ {0, · · · , dM (m)},

p(d(r, σ) = i|ω, σ) = ni
e−iω

ψ(ω)
,

where ni represents the number of rankings with distance of i to the reference ranking σ. One can
approximate p(d(r, σ) = i|ω, σ) by a binomial distribution

B

(
i|dM (m),

e−ω

1 + e−ω

)
= binomdM (m)i

e−iω

(1 + e−ω)dM (m)

where ni, and ψ(ω) are approximated by
(
dM (m)

i

)
and (1 + e−ω)dM (m) respectively. Using this

approximation, the convexity of function of c(.|λ), and Equations 13, 10, and 12, we can write

D̃(x,θ) =

(
1− x

dM (m)

)
D(σ,θ) +

(
x

dM (m)

)
D(σM ,θ)

≈
(

1− x

dM (m)

) dM (m)∑
i=0

(
dM (m)

i

)
e−iω

(1 + e−ω)dM (m)
c(i|λ)

+

(
x

dM (m)

) dM (m)∑
i=0

(
dM (m)

i

)
e−iω

(1 + e−ω)dM (m)
c(dM (m)− i|λ)

=

(
1− x

dM (m)

)
E [c(x,λ)]

x∼B
(
dM (m), e−ω

1+e−ω

) +
x

dM (m)
[c(dM (m)− x,λ)]
x∼B

(
dM (m), e−ω

1+e−ω

)
≤
(

1− x

dM (m)

)
c(E[x],λ) +

(
x

dM (m)

)
c(dM (m)− E[x],λ)

We let ˜̃D =
(

1− x
dM (m)

)
c(E[x],λ) +

(
x

dM (m)

)
c(dM (m) − E[x],λ) Now, as

E [x]
x∼B

(
dM (m), e−ω

1+e−ω

) = dM (m)e−ω

1+e−ω , we have

˜̃D(x,θ) =

(
1− x

dM (m)

)
c

(
dM (m)e−ω

1 + e−ω

)
+

x

dM (m)
c

(
dM (m)

1 + e−ω

)
.

Using this approximation, one can approximate the edge density by

˜̃E(θ) = E
[

˜̃D(x,θ)
]

x∼B
(
dM (m), e−ω

1+e−ω

)
=

1

1 + e−ω
c

(
dM (m)e−ω

1 + e−ω

)
+

e−ω

1 + e−ω
c

(
dM (m)

1 + e−ω

)
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C Computing the number of rankings with distance k for Kendall-τ distance

We here explain our dynamic programming approach for calculating the number of rankings with
Kendall-τ distance k from an arbitrary fixed reference ranking. We let T (j, k) denote the number
of rankings with Kendall tau distance k ∈ [0,

(
j
2

)
] from a reference ranking with j alternatives.

We note that T (j, 0) = 1 for any j ≥ 1 and T (j, k) = 0 for any k >
(
j
2

)
. We focus on the

fact that Kendall tau distance between two permutations measures the minimum number of swaps
or inversions for converting one permutation to the other permutation. Considering the insertion
model, we also observe that the jth alternative can be inserted in j possible positions, thus causing 0
to j−1 inversions or swaps (0 to j−1 distance). This implies that when k ≥ j−1, the jth alternative
can be part of either 0, 1, . . . , or j−1 inversions while the other preceding j−1 alternatives involve
in k − 0, k − 1, . . . , or k − j + 1 inversions. Similarly, when k < j − 1, the jth alternative can
be part of either 0, 1, . . . , or k inversions while the other preceding j − 1 alternatives involve in
k, k − 1, . . . , or 0 inversions. Hence, we can write this recursive equation:

T (j, k) =

min(k,j−1)∑
i=0

T (j − 1, k − i) (28)

Since k ∈ [0,
(
m
2

)
] and j ∈ [1,m], T can be viewed as a m× m(m−1)

2 matrix. For calculating each
element of this matrix, at mostm−1 summation operation is required. Thus, the running time of our
dynamic approach is O(m4). However, this time complexity can be improved by slight change of
our recursive formula. From Eq. 28, we note that for k ≤ j−1, T (j, k)−T (j, k−1) = T (j−1, k)
and for k > j − 1, T (j, k) − T (j, k − 1) = T (j − 1, k) − T (j − 1, j − k). Hence, the recursive
formula in Eq. 28 is equivalent to:

T (j, k) =

{
T (j, k − 1) + T (j − 1, k), k ≤ j − 1

T (j, k − 1) + T (j − 1, k)− T (j − 1, k − j), k > j − 1
(29)

Using this recursion, each element in matrix T can be calculated in O(1), thus yielding in overall
time complexity of O(m3). Note that, in this manuscript, we are interested in those values located
in row m of matrix T (i.e., T (m, k) for 0 ≤ k ≤

(
m
2

)
), thus using nk notation instead of T (m, d) so

far and on.
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