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ABSTRACT
In Iterative Voting, voters first cast their ballots but may change

their minds upon observing the ballots of others. Previous models

have extended Iterative Voting to the incomplete information dom-

ain of social networks, where voters only observe the ballots of

their friends. However, these models are based on computationally-

intensive calculations of expected utilities. We propose a framework

of bounded rationality for voters situated in social networks. Using

this framework, we propose and test a number of heuristics that

reduce the computation required for optimal strategic reasoning

by several orders of magnitude compared to previous work, while

retaining similar qualitative behaviors. These heuristics enable us

to conduct simulations on how the size of the voting population

affects strategic behavior. To illustrate the effectiveness of our ap-

proach, we apply our heuristics to explore the Micromega rule —

an observation in political science that large political parties favor

small assemblies. We find that the size of electoral districts is a

contributing factor to the Micromega rule in some networks. Fringe

candidates retain more support in smaller districts, while larger

parties dominate in larger districts.
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1 INTRODUCTION
Social networks are mathematical descriptions of how individuals

interact in a community. They capture how news and information

flow between people, and what social structures are present in dif-

ferent communities. As the Internet matures as a technology, more

and more information about these social networks are captured as

“big data”. At the same time, these online social structures wield ever

increasing influence over our lives at all scales – from the minutiae

of our day-to-day moods [14], to turnout at congressional elections

[6]. It is therefore of paramount importance that we understand

the mechanisms by which social networks affect decision making.
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One natural area to focus our attention is the problem of group

decision making, i.e. social choice. In particular, we examine the

problem of voting. Voting is a method by which a community elicits

the opinions of its members so it may make a collective decision.

Savvy votersmay choose to vote strategically; that is, when a voter’s

favorite candidate is unlikely to win, she may choose to vote for

a more promising alternative instead. One way of modeling this

behavior is Iterative Voting, where voters may choose to change

their ballots after observing the interim outcome of the election

[17]. This process terminates when no voter wishes to change

their ballot anymore. In the basic model, voters only change their

ballot when doing so will alter the outcome favorably. Subsequent

work incorporates voters who are truth biased (who prefer voting

sincerely if they cannot otherwise affect the outcome), lazy (who

prefer abstaining, all else being equal) [21], or optimistic (who

assume up to a fixed number of voters may be swayed to their

cause) [20].

Recently, there have been growing research in studying social

choice problems on social networks (see, for example, [4, 11, 23, 24])

Iterative Voting has also been extended to social networks [25]. In

this model, voters no longer have complete information on the bal-

lots in the election. Instead, voters are embedded in a social network

and only observe the ballots of their neighbors. Each voter must

use this observation to compute the likely outcomes of the election,

and respond accordingly. This calculation is computationally inten-

sive; it scales poorly in larger networks and elections with many

candidates. In this paper, we propose a number of heuristic models

that greatly reduce the computational and cognitive requirements

on the voters. We argue that these heuristics represent natural mo-

dels of boundedly rational human behavior. Simultaneously, our

heuristics speed up the computation of strategic response by up to

2 orders of magnitude, allowing us to explore the strategic behavior

of voters in larger populations. In particular, we examine the Mi-

cromega rule, the tendency for large political parties to favor small

assemblies with large electoral districts, and vice versa. We show

that population is a contributing factor to the Micromega rule in

some networks.

2 FRAMEWORK
To establish a framework for voter behavior for elections with large

populations, we consider several desirable criteria for these models.

We base our framework on the desiderata presented for voters in

general populations [16], and adapt them to our domain: voters in

large populations embedded in social networks. The social network

naturally restricts the availability of information to voters in an

asymmetric way; one voter has different information about the

election than another. Moreover, we emphasize that the voters in



our framework are boundedly rational, and therefore computati-

onally limited. This both reflects the human nature of real world

voters, and also ensures our heuristics can be computed in a timely

manner.

Knowledge: A voter does not have perfect information on the

actions of the populations. Rather, each voter is only able to observe

the actions of a limited number of other voters. In particular, we will

restrict these observations to the neighbors in the social network,

which we will define in the sequel. Voters must infer the current

state of the world based on this limited information.

Rationality: Subject to their observations, preferences, and be-

liefs, voters act to maximize their expected utility of the electoral

outcome. In particular, while the chances of casting a pivotal vote

in an election is very small, it is the only event of importance to

rational voters. Their observations allow them to compare the li-

kelihood of pivot conditions between different candidates and act

accordingly.

Anonymity: Beyond readily available network properties, vo-

ters treat observations from their social contacts anonymously.

Candidates are judged only based on the utility that they bring to

the voters upon being elected.

Equilibrium: The model converges to an equilibrium outcome

(according to some established solution concept), or readily shows

it cannot exist.

Tractability: The computation of voter responses is computa-

tionally tractable for the voter. Real world voters are boundedly

rational agents and frequently employ heuristics to simplify their

cognitive load. While the computation or approximation of pro-

babilities may be unavoidable, this computation should be fast,

particularly for “easy” cases.

Optimistic: Voters act in the belief that their actions may have

an impact, even when this is not guaranteed. This is in sharp con-

trast to the complete information setting of Iterative Voting, where

voters act strategically only when they know they are pivotal.

Motivated by these desiderata, we make the following assumpti-

ons in our heuristic models. We do not consider these desirable cri-

teria; rather, we consider these to be natural ways of implementing

them in our voter heuristics.

Markovian Strategy: While voters have access to histories of

past actions from their social contacts, we assume voter response

is Markovian and computed as a function of current observations.

While making use of past history may allow the voter to detect pat-

terns and trends, doing so is computationally intensive and further

compounds concerns of tractability. We argue that this simplifying

assumption reasonably models human behavior, because humans

are bounded rational agents and human memory is limited.

Myopic Response: Being boundedly rational, voters are not

concerned about second order effects in the network. That is, they

do not consider that an adjustment in their ballot may also cause

others to adjust their ballots, and this knock-on effect may be detri-

mental to the original voter. Instead, we assume voter responses

are myopic improvements to the current situation. This is a rea-

sonable assumption to adopt because predicting these knock-on

effects will be computationally intensive. However, adopting this

assumption may actually make equilibria more difficult to achieve.

For instance, non-myopic agents may be able to predict actions that

lead to cycling behaviors within the population, which prevent the

convergence to an equilibrium outcome.

2.1 Voting Model
Let the population V of n voters be situated in a social network

represented by a simple, directed graphG = (V ,E). A directed edge

(i, j) ∈ E means voter i observes voter j, and therefore, j’s actions
may influence i . Let C = {1, 2, . . .m} denote the set of candidates.

Each voter i has a preference pi represented as an integer from the

interval [0, 100]; each candidate supports a position drawn from the

same space. If the winning candidate supports position p̂, voter i
derives utilityui (pi , p̂) = −|pi −p̂ |

2
from this outcome. These single

peaked preferences are commonly used in social choice theory to

represent the political spectrum [3, 12], and quadratic diminishing

utility functions, in particular, were used by Myerson and Weber

[19].

Each voter casts a ballot from the set of admissible ballots B.

A social choice function F maps the set of submitted ballots to a

unique winner fromC . We focus on the plurality voting rule, where

B = C . If ni is the number of ballots supporting candidate i , then
the plurality voting rule F = argmaxx nx maps the set of ballots

to the candidate receiving the most votes, breaking ties randomly.

Voting proceeds in rounds. In the first round, voters’ ballots re-

flect their sincere top choice. In subsequent rounds, one by one,

voters are allowed to revise their ballots based on observing the

ballots of their out-neighbors. For a particular voter i , let the vector
s = (s1, s2, . . . sm ) denote the fraction of i’s out-neighbors suppor-
ting each candidate, with Laplace smoothing applied by adding one

to the tally of support for each candidate. Each voter i computes

her revised ballot b ′ ∈ B according to her Voter Response Function

Ri (s,ui ) = b ′. We assume voter behavior is symmetric and so omit

the subscript for simplicity. We also omit the parameter ui when
it is clear from context. Voting terminates when no voter’s ballot

changes in a round; we say that our population has converged to

an equilibrium.

2.2 Fully Rational Voter
The fully rational voter computes the exact pivot probability for

each pair of candidates by assuming future ballots will be distri-

buted according to a multinomial distribution with support s. The
probability of observing a final tally of b = (b1,b2, . . .bm ) is

Pr (b;n − 1; s) =
(n − 1)!

b1!b2! . . .bm !

m∏
i=1

sbii (1)

The voter then computes the probability T (y,x) that the any

two given candidates x and y are in a pivot condition. That is, by

adding one ballot supporting x , the winner changes from y to x .
This is calculated by enumerating all possible such pivot outcomes,

and summing the probability of each outcome. For example, un-

der lexicographic tie breaking, and ignoring multi-way ties, the

pivot outcomes for candidates 1 and 2, when n = 10,m = 4, are

(5, 5, 0, 0), (4, 4, 2, 0), (4, 4, 1, 1), (4, 4, 0, 2), and (3, 3, 2, 2); each would

be associated with a probability of occurrence based on the multi-

nomial distribution. Then, she calculates the Prospect Rating for

that candidate:



Cx =

m∑
y=1

T (x ,y)(ux − uy ) (2)

The Voter Response Function is RFULL(s) = argmaxx Cx . We will

refer to this model as the Full Voter model.

The consideration of probable outcomes is crucial in two ways:

to allow our voter to act strategically even when she does not know

for certain that she will be pivotal, and to allow strategic actions to

be sensitive to the size of the voter population. To illustrate this,

suppose our voter observes a ballot ratio of (3,5,4) in her neighbors,

in order of her preferences. If the election is small, say with only

12 others, the voter could make a convincing argument to stay true

to her top choice. But if the election is larger, she might prefer

securing her second choice against a more serious threat from her

last choice, because the prospect her favorite candidate will make up

such a large gap seems much more remote. This model captures the

stochasticity of this situation, so that voters act rationally despite

the incomplete information available to them.

2.3 Voter Heuristics
As we illustrate above, the Full voter model must enumerate all

possible pairwise pivot conditions, calculating RFULL is computatio-

nally intensive, and scales poorly as n orm increases. To establish

a crude upper-bound on the complexity of this computation, we

examine a related counting problem, the classic Stars and Bars

Problem (SB) by William Feller [10]:

Given positive integers n andm, the number of dis-

tinctm-tuples of non-negative integers that sum to n

is given by the multiset function

((
n+1
m−1

))
.

The SB number counts the number of possible outcomes of the

voting process, which is a gross upper-bound on the number pivotal

outcomes. We further refine this estimate by enumerating the num-

ber of ballots received by a co-winner, which is bounded between

⌊ n
2
⌋ and ⌈ nm + 1⌉, and utilizing the SB number to count the number

of ways to distribute the remaining ballots between the remaining

candidates. Using this technique, each best response calculation

requires O(m2nm−2) queries to the multinomial distribution.

While this bound is very loose, empirical experimentation rein-

forces this bound. The FullVoterModel scales very poorly as either

n orm increases. Since one of our desiderata is Tractability, both

for the purpose of scalability, and to more accurately model human

bounded rationality, we propose a number of voter heuristics that

reduces the computational and cognitive load on the voters. In each

of these models, the pivot probabilities are simplified to the chance

that x and y are exactly tied as winners (i.e. discounting the cases

where x has one fewer ballot than y).
Top-k Voter: An intuitive way of easing the voters’ cognitive bur-

den is for them to ignore unpromising candidates. This is obser-

ved in the political science literature. For example, Meffert and

Gschwend [15] conducted studies in the laboratory on strategic

voting behavior in coalitional governments. They used fictional

parties with monetary incentives based on the elected outcome, and

found that participants used a number heuristics when considering

their ballot. One of these heuristics was to avoid parties that did

not enjoy enough popular support to contribute meaningfully to

the result. Similar to Reijngoud and Endriss [22], we allow voters

to disregard all but the top k candidates when they consider whom

to support. We note that, due to our incomplete information set-

ting, one voter’s top k candidates may differ from those of another

voter. We model this type of behavior as the Top-k voter. Here,

voters consider only the k ≤ m candidates with the most popular

support according to s, breaking ties in favor of utility of victory.

The voter treats the election as if only these top k candidates were

participating, and computes RTop−k based on
(k
2

)
pivot probabilities,

rather than

(m
2

)
. The resulting algorithm requires only O(k2nk−2)

queries to the multinomial distribution, though determining the

top-k supporters and permuting the entries adds a small overhead

to the computation that scales withm.

Max-M Voter: The Full Voter considers the expected utility gained

by supporting a candidate over all other candidates. A boundedly

rational voter may employ a different measure, supporting the

candidate offering the maximum marginal gain over a rival candi-

date. That is, the voter focuses on pairwise comparisons between

candidates, picking the candidate who offers the most compelling

position, and has the best chance of beating the most serious threat.

Formally, consider the following utility computation in place of

prospect rating Cx (Equation 2):

Dx = max

y,x
T (y,x)(ux − uy )

RMax−M = argmaxx Dx selects the candidate maximizing this

marginal utility over some other candidate. The motivation behind

using this alternative utility function is that it approximates the be-

havior of the Full Voter, while offering mathematical optimizations

that greatly reduce computational load. Such pairwise comparisons

may also be more natural for human voters to process. Rather than

considering the marginal gains over every other candidate, this cal-

culation emphasizes the candidate’s merits against the most salient

of opposition. Indeed, political campaigns often focus on demo-

nizing particular opponents to bolster the merits of the favored

candidate.

Tie Sampling Heuristics. Rather than calculating the exact pro-

bability of a pivot condition between x and y, we may utilize sam-

pling techniques to estimate this probability. Here, the voter may be

thought of as sampling from the outcome space to consider specific

pivot scenarios, and acting based only on these imagined, plausible

outcomes. This gives us the TieU, TieR and TieH models below,

each is based on the Full voter model.

TieU: We first enumerate all pivot outcomes using a finite state

machine. But rather than querying the multinomial distribution for

each outcome, we sample l outcomes from this space, and calculate

the probabilities of each of these outcomes according to Equation 1,

and approximate T (y,x) as the sum of these l probabilities. This
reduces the number of queries to l , though the algorithm must

still iterate over the entire pivot space, which is still anO(m2nm−2)

operation.

TieH: Rather than sampling uniformly from the space of pivot

outcomes, which requires enumerating that space fully, we use the

following heuristic for sampling non-uniformly from this space. The

number of ballots bw for our tied winners is drawn uniformly from



the interval [⌈n−2m + 1⌉, ⌊ n
2
⌋].1 To allocate the remaining ballots

r , the algorithm iterates through the other candidates in random

order. For each candidate, the space of admissible allocations is the

interval [max(0, r −m′ × min(r ,bw − 1)),min(r ,bw − 1)], where

m′
is the number of unallocated candidates. The algorithm draws

uniformly from this interval to allocate the number of ballots for the

current candidate, and updates r andm′
before moving to the next

candidate. The result is one possible pivot outcome. Its probability

is calculated according to Equation 1, and T (y,x) is approximated

as the sum of l such probabilities. This requires exactly l queries,
with negligible overhead.

TieR: We estimate T (y,x) by using a Monte Carlo algorithm in the

space of pivot outcomes using rejection sampling. We generate l
outcomes of the election by sampling from the multinomial distri-

bution. T (y,x) is estimated as the proportion of those outcomes

which result in a 2-way pivot betweeny and x . This requires exactly
l queries, with negligible overhead.

Poisson Voter: Myerson proposed an alternative model for electi-

ons, treating them as large Poisson Games [18]. In this interpre-

tation, the number of voters is uncertain and follows a Poisson

distribution with mean ne . That is, the probability that there are k
voters is

Poisson(k |ne ) = e−nenke /k! .

If a given voter has probability sb of casting a particular ballot b,
then the number of voters casting b is also a Poisson distribution

with mean sbne . Crucially, this means the number of voters casting

one type of ballot is independent of the number of voters casting

another ballot. He focuses on the convergence behavior of the pro-

bability that a 2-candidate election results in a tie, allowing for

abstention where voting may be costly. While Myerson’s Poisson

Game models a fundamentally different voting process, we will pro-

pose a voter heuristic that extends this model to a multi-candidate

election to create a voter model with behavior similar to the Full
Voter.

Let ni be the random variable representing the number of votes

that candidate i receives, and si denote the probability that a given

voter casts a ballot supporting candidate i . Recall that ni follows a
Poisson distribution with mean sine . Then, Myerson shows that,

as ne approaches ∞, the probability of casting a pivotal vote
2
in

support of c ∈ {1, 2}, in a 2-candidate election, converges to

Pr (n1 = n2 |s) ≈
ene (2

√
s1s2−s1−s2)

4

√
πn

√
s1s2

√
s1 +

√
s2

√
sc

This requires that s1+s2 ≤ 1, allowing for some voters to abstain.

To extend this model to a multi-candidate election, we treat ballots

supporting other candidates as abstentions. We also require that

this be a winning tie: i.e. nc > ni ,∀i , 1, 2. Since ni are drawn

independently from Poisson distributions with mean sine , the pro-
bability that nc − ni > 0 follows a Skellam distribution, which is

approximated as

1
The lower bound is obtained by reserving two ballots for the tied winners and then

splitting the remaining ballots evenly betweenm candidates.

2
This accounts for both a direct tie, and where c is one vote away from a tie.

Pr (nc > ni ) ≈
(1 + (bc + bi )

2)e−(
√
bc−

√
bi )2

2(bc + bi )2

−
e−(bc+bi )

4

√
bcbi

−
e−(bc+bi )

8bcbi

where bc = scne and bi = sine , and sc > si [13]. If we make the

simplifying assumption that the eventsn1 = n2 andn1 > ni∀i , 1, 2

are independent
3
, then the probability that candidate x and y are

in a pivot condition is the intersection of the events where x and y
are tied, and x has more votes than every other candidate i , x ,y.
So, we approximate T (y,x) as

T (y,x) = Pr (nx = ny |s)
∏

i ∈C\{x,y }

Pr (nx > ni )

As a result, the Poisson Model requires

(m
2

)
probability calcula-

tions, each of which takes O(m) computations, giving us a rough

runtime of O(m3).

3 COMPARISON VIA SIMULATIONS
To benchmark these heuristics against the Full Voter model, we

construct a framework where a voter v is queried for a strategic

response based on a particular set of observations. For each trial,

m candidates are generated with positions drawn uniformly at

random from [0, 100]. The voter v and her d = 25 out-neighbors

also draw their preferences from the same distribution. The value

of d captures the amount of information available to the voter,

and also the “resolution” of Figures 5–7. We chose a moderate

value of d = 25, though we do not expect changing the value of

d to significantly impact the results in this section. Each of the

out-neighbors are assumed to vote truthfully, and v constructs a

strategic ballot based on her Voter Response Function.

Figures 1 through 3 show the time (in seconds) required to con-

struct one voter response under different voter models, with va-

rying number of candidatesm and size of electorate n. Each datum

is averaged over 1000 trials. The top bar shows the time required

for the Full voter. We see that the sampling heuristics, particularly

TieR and TieH perform well, up to 2 orders of magnitude faster

than Full; their runtimes are plotted in the Insets of Figures 2 and 3

using a different scale. Additionally, the runtime of TieH is unaf-
fected by n. The Poisson Voter is not included in these benchmarks

because its runtime is negligible.

We also compare the voter response of the heuristics to the re-

sponse of the Full Voter. Figure 4 shows the rate of disagreement

between the heuristics and the Full Voter. TieH (L = 2000) has a

disagreement rate of 0.124, which means it computes a strategic

ballot different from Full 12.4% of the time. Most heuristics are

comparable in their accuracy, except TieR which performs noticea-

bly worse. The accuracy of TieR may be increased by increasing

the sample size l , but the gain is modest compared to the increase

in runtime. It is interesting to note that even though the Poisson
Voter is based on a fundamentally different model of voting, its

3
The two events n1 = n2 and n1 > ni are not independent in general. For example,

suppose that s1 = s2 ≫ s3 . If we know that n1 < n3 , then we know that n1 is likely

small, which makes the event n1 = n2 much less likely.



Figure 1: Runtime in seconds to con-
struct one voter response (m = 5, n =
100).

Figure 2: Runtime in seconds to con-
struct one voter response (m = 5,n = 500).
Inset show runtimes of heuristics using
a different scale (also in seconds).

Figure 3: Runtime in seconds to con-
struct one voter response (m = 6,n = 100).
Inset show runtimes of heuristics using
a different scale (also in seconds).

accuracy is comparable to the other heuristics according to this ben-

chmark. The results of Figure 4 are representative of other settings

of n andm.

Figure 4: Rate of Disagreements from the Full Voter Model
(m = 5, n = 500).

Poisson and TieH Voters appear to be our best heuristics for

approximating the behavior of Full Voter. Next, we examine ex-

actly when they disagree with Full Voter. For this benchmark, we

consider the space of all possible observations that the voter may

encounter, and determine which observations induce differences in

voter response. For simplicity, we consider the case wherem = 4

and n = 500. We assume the voter observes the ballots of d = 25

other people in her social network. We fix the voter’s preference to

be 0, the candidates positions to be (10, 15, 20, 25); that is, v likes

candidate c1 the most, and c4 the least. This results in a plot on

3-axes: (b1,b2,b3) representing the number of observed ballots sup-

porting candidates 1, 2, and 3 (ballots supporting 4may be inferred).

We project this to the 2 dimensional heatmap shown in Figure 5.

Along the x-axis, we plot b1, the number of ballots the voter ob-

serves supporting her favorite candidate; along the y-axis, b2, the
support for her second choice. Each cell represents multiple points

in the observation space. For instance, the cell (4, 5) corresponds

to all observations (4, 5,b3), where b3 ∈ {0, 1, . . . 16}. Cells in solid

green represent conditions where Full Voter always casts a sincere
ballot for candidate 1; Cells in solid white represent conditions

where Full Voter never votes sincerely. Because the heatmap is a

projection from a higher dimensional plot, each cell may represent

more than one possible observation. When Full votes sincerely in

only some of those observations, the cell is shaded in lighter green.

The triangle on the bottom right, show in gray, are inadmissible

conditions where the total number of ballots supporting candidate

1 and 2 exceed 25.

Naturally, as b1 increases, Full will have a tendency to vote

for 1 as well. The large triangular cutout on the left shows when

candidate 2 has enough support that v will change to a strategic

vote for 2. The upper left region shows situations where neither 1

nor 2 have much support, and the election is a race between 3 and

4. This plot shows that the Full Voter tends to vote sincerely when
her favorite candidate has even moderate amount of support (to

bolster her chance for victory), or when the race is between her top

and second choices. She only votes strategically when she believes

the likely winners do not include candidate 1.

Figure 6 uses the same axes, and highlights the conditions where

TieH (L = 1000) disagrees with Full. Cells in red show increased
preference for sincere voting; cells in green show decreased pre-

ference for sincere voting. Cells in white show the two models in

general agreement (i.e. the observations represented by the cell

result in the same number of wins for each candidate, though not

necessarily for the same observations). Due to the stochastic nature

of TieH, the instances of disagreement are spread out in the obser-

vation space. However, there is a trend for them to concentrate near

the borders where the Full Voter transitions between different

ballots. This is more clearly seen in Figure 7, which maps the same

differences between Poisson and Full. Here, we see that Poisson
systematically casts more sincere votes, and the disagreements con-

centrate on the transition between sincere voting and strategically

voting for the second choice.

4 ADDRESSING THE DESIDERATA
We return to the desiderata proposed earlier in this paper and con-

sider how well our proposed heuristics implement them. Figure 8

summarizes the degree to which each proposed heuristic fulfills

the desiderata, including a column for the Full Voter Model, and

a row for a heuristic’s Fidelity when compared to Full. By their

design, the heuristics adhere to the Knowledge requirement, that

each voter acts only upon observations gleaned from her social net-

work. Similarly, all heuristics fulfill the Anonymity and Optimistic



Figure 5: Conditionswhere Full votes
sincerely in green.

Figure 6: Conditions where TieH dis-
agrees with Full in red or green.

Figure 7: Conditions where Poisson
disagrees with Full in red or green.
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Knowledge ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rationality ✓ ∼ ∼ ∼ ∼ ∼ ∼

Anonymity ✓ ✓ ✓ ✓ ✓ ✓ ✓

Equilibrium * * * * * * *

Tractability ✗ ✗ ✗ * ✓ ✓ ✓

Optimistic ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fidelity – ✓ ✓ ✓ ✓ ✗ ✓

Figure 8: Adherence to the Desiderata by the Heuristics. ∼
indicates approximately rational. The asterisks in the Equi-
librium row indicate each algorithm will either converge to
an equilibrium or display a cyclic behavior. The symbols in
the Tractability row provide rough indicators on the speed
of the algorithms, ranging from slow (✗), to moderate (*), to
fast (✓).

criteria. Our models also fulfill the Equilibrium desideratum in the

sense that it terminates when the population converges, or exhibits

cyclic behavior to show an equilibrium cannot be reached.

As explained earlier, the Full Voter Model is based on rational

actions of the voter, and so fulfills the Rationality desideratum. The

other models approximate this rational behavior to varying degrees

of fidelity. With the exception of the TieR models, all our proposed

heuristics replicate the decisions of the fully rational voter most of

the time (about 88% to 90% form = 5 and n = 500).

The main difference between our models is in the Tractability

desideratum. As noted before, the Full Voter Model scales very

poorly with both the number of candidatesm and the number of

other voters n. The heuristics Top-K, Max-M and TieU simplify this

computation in different ways, but still require this enumeration.

As a result, they scale poorly to larger elections. The TieR heuristic
bypasses the need for enumerating pivot space by using Monte

Carlo sampling on the entire outcome space; this is fast, but un-

fortunately loses accuracy quickly in larger elections due to the

sparsity of pivot outcomes. On the other hand, the TieH heuristic
generates more consistent runtimes by allow the heuristic to not
sample uniformly from the pivot space. The cost in accuracy for

making this assumption is small, while the performance gains are

enormous. Surprisingly, the Poisson heuristic also performs very

well in our experiments. While it makes fundamentally different

assumptions about the voters, it produces results that are compara-

ble in accuracy to TieH in a negligible runtime. Thus, Poisson and

TieH are the heuristic models that fulfill the best combination of

desiderata for use in larger simulations.

5 CASE STUDY: THE MICROMEGA RULE
In this section, we illustrate an application of our heuristics by

studying the Micromega Rule. In particular, we focus on the effects



of different population sizes, an aspect that relies on our heuristics’

ability to scale to larger graphs.

In political science, the Micromega rule frequently deals with

districting and systems of proportional representation. While it is

intuitive that properties of the voting rules determine the qualities

of successful parties, Josep Colomer [7] posits that this influence

runs both ways: that existing political parties will favor electoral

rules that improve their future electoral chances. In particular, he

formulated the Micromega rule, which predicts that a government

comprised of few, large parties will favor smaller assemblies and

larger districts, while those formed from smaller parties will favor

assemblies with many seats and smaller individual districts. These

topics have been explored in computational social choice by Ba-

chrach, Lev, Lewenberg, and Zick [2]. They compare the outcomes

from a district based election to that of a popular vote. They devise

the Misrepresentation Ratio to measure this deviation, and show

that misrepresentation occurs in voter populations of all sizes.

We explore a variation of the Micromega rule. We posit that

large parties are more effectively able to consolidate their voter

base in large electoral districts (i.e. those having a larger population

of voters), while less populous districts will see more continued

support for less popular candidates. It is this continued support

that allows the party to remain viable in future elections. The use

of voter heuristics is essential to this exploration of the Micromega

rule because our hypothesis depends on population size. Without

using heuristic voter responses, it would not be feasible to simulate

communities of any significant size, and we would not be able to

sample election results from a large enough range of community

sizes of test our hypothesis.

We present our electoral districts as simulated social networks.

We use directed and undirected versions of the Erdős-Rényi (ER)

random graph model [9], and the Barabási-Albert (BA) preferential

attachment model [1]. In the (directed) ER graph with density para-

meter pr , every (directed) edge exists with probability pr . To create

a (directed) BA graph with attachment parameter pr , we recursi-
vely add new nodes to an existing graph, attaching it to pr existing
vertices via a (directed) edge; the existing vertices are picked with

probability proportion to their (in-)degree. We consider graphs of

sizes n ∈ {200, 400, 600, 800}. We focus on the scenario withm = 5

candidates. We fix the average in-degree of each node to be approx-

imately d = 30.
4
A value of d = 30 was selected as a reasonable

number of informational sources voters may consider in such a

scenario. Increasing d allows voters to sample more information

from the network, and therefore give them a more precise estimate

on the outcome of the election. This will likely increase the amount

of strategic play in all conditions, since voters will be less optimistic

that a favorite candidate will recover if they are behind in the polls.

However, we do not believe changes to d will significantly affect

the qualitative patterns that emerge.

Based on our results from the previous section, we will use both

the Poisson and TieH models for this simulation. The Poisson
model is parameter free, though it exhibits systematic bias as com-

pared to the Full voter; for the TieH model, we set the sample size

parameter at L = 2000. To measure the degree of support for less

popular parties, we take the SF Ratio, the ratio of support between

4
Importantly, the parameter pr is doubled when constructing directed BA graphs.

the second- and first-runner up candidates [8]. Each data point is

the average of 200 replications.

5.1 Results
Figure 9 plots the average SF-Ratio for each condition under the

TieH model. Here, we observe clear downward trends in the di-

rected ER and BA graphs — the amount of support for the third

place candidate diminishes exponentially with increasing voter po-

pulation, reflecting an exponentially increasing ability for voters to

vote strategically. Most interesting is the difference in SF Ratios of

the ER and dER graphs. Structurally, there is only one difference

between these two models. In the ER graph, influence is reciprocal

– if v observes another voter, then that other voter also observes

v . The same is not generally true in a dER graph, which allows

their voters an increased ability to communicate and propagate

information through strategic play.

The most significant downward trend is observed in the dBA

graph. The dBA model generates directed acyclic graphs that have

a strongly hierarchical structure. Information in these graphs flow

from the older and higher degree nodes, toward the younger, lower

degree nodes. This hierarchical structure prevents effective com-

munication, which manifests in the high SF Ratios, particularly in

smaller graphs.

Figure 10 plots the average SF-Ratios under the Poisson model.

We observe the same strong trend in the directed BA graphs. Howe-

ver, there is no discernible pattern in any of the other graph types

as the population size changes (data not shown). It is possible that

this difference is due to the systematic bias in how the Poisson
model attempts to estimate the Full voter’s behavior, or that the
trend observed in the directed ER graphs is relatively fragile com-

pared to that of the directed BA graph. This can be interpreted as

an alternate cause of the Micromega Rule — that large electoral

districts facilitate the consolidation of support for larger parties in

certain types of social networks, where as districts with smaller

voting populations show more support for “fringe” candidates.

Figure 9: Average SFRatios of graphs of different sizes under
the TieH model. Note y-axis is in log scale.



Figure 10: Average SF Ratios of graphs of different sizes un-
der the Poissonmodels. Note y-axis is in log scale.

It is worthy to note that the undirected BA graphs show no

significant trend in either direction. Amongst the models used, the

BA preferential attachment model may be the most representative

of real world social networks. So while we demonstrate an alternate

cause for the Micromega rule in certain types of social networks,

the result does not necessarily generalize to real world networks.

6 CONCLUSION
In this paper, we proposed a number of heuristic voter models for

strategic voting in social networks. While the Full Voter model in

[25] works well in small graphs, the exact computation of expected

utilities proves infeasible for larger graphs. Voters in our models are

boundedly rational and our heuristics lighten their cognitive burden

in ways that would be natural for a human voter. Our heuristics

perform up to 2 orders of magnitude faster, and retain a high level

of fidelity when compared to the Full Voter model. As a result, this

allows us to highlight the differences in strategic behavior when

voters are part of populations of different sizes.

To illustrate this, we use our heuristic voter model to investigate

the Micromega rule. We show that in certain networks, particu-

larly the directed Erdős-Rényi and directed Barabási-Albert models,

smaller populations offer more support for fringe candidates than

larger electorates. The orientation of directed edges in the dBA

graphs lends it a strict hierarchical structure, which reinforces the

Micromega rule dramatically in our simulations. Other preferen-

tial attachment models such as Bollobás’s scale-free graphs offer

parameters which may be tuned to allow for different degrees of

hierarchy [5]. It would be interesting to explore the impact of hier-

archical structure on strategic voting in future work.

Our heuristic models also pave the way to simulating strategic

voting behavior in truly large scale networks. This opens up the pos-

sibility of simulating on real world datasets, where nodes number

in the millions. We may also consider comparing the results of our

models to human voting behavior in controlled settings. Moreover,

our model could be extended to include other scoring rules, such as

Borda and k-Approval, and other social choice functions in general.
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