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Abstract

Social networks play a central role in the transactions and decision making of
individuals by correlating the behaviors and preferences of connected agents.
We introduce a notion of empathy in social networks, in which individuals
derive utility based on both their own intrinsic preferences, and empathetic
preferences determined by the satisfaction of their neighbors in the network.
After theoretically analyzing the properties of our empathetic framework, we
study the problem of group recommendation, or consensus decision making,
within this framework. We show how this problem translates into a weighted
form of classical preference aggregation (e.g., social welfare maximization or
certain forms of voting), and develop scalable optimization algorithms for
this task. Furthermore, we show that our framework can be generalized to
encompass other multiagent systems problems, such as constrained resource
allocation, and provide scalable iterative algorithms for these generalizations.
Our empirical experiments demonstrate the value of accounting for empa-
thetic preferences in group decisions, and the tractability of our algorithms.
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1. Introduction

Social networks facilitate interactions and behaviours between individu-
als, businesses, and organizations, ranging from discovery of job opportunities
[2] and the products we consume [3], to how we vote [4] and how we cooper-
ate [5]. It is widely acknowledged that the behaviors, and to a lesser extent
preferences, of individuals connected in a social network are correlated in
ways that can be explained, in part, by network structure [6, 7, 8]. Because
of this, and the increasing availability of data that allows one to infer such
relationships—either directly through online social networks like Facebook,
or indirectly through online-mediated communications or transaction data—
the study of social choice and group decision making on social networks is of
both theoretical and practical importance.

Arguably, most group decision problems, whether social, corporate, or
policy-oriented, involve people linked by myriad social ties. These ties may
provide strong clues as to the preferences of individuals, which can then be
used to facilitate the process of preference aggregation required to implement
some social choice function, in other words, to make a group decision. In-
deed, decision making for groups in which relatively few social ties exist (e.g.,
national elections) is much rarer than decisions where strong ties exist: fam-
ily and social groups, team formation in companies, local public projects and
policy decisions, etc. Even national political elections and policy decisions
take place in the context of individuals that are linked by various (local)
social ties. Several broad questions guide our investigation of social choice
problems in social networks: (i) How are individual preferences shaped by
social networks? (ii) How should one mathematically model such processes?
(iii) Can such processes be harnessed for more effective group decision mak-
ing?

We address a specific aspect of these questions by considering the role
that empathy plays in shaping preferences in the context of social relation-
ships. We introduce a novel empathetic social choice framework in which
agents derive utility based on both their own intrinsic preferences and their
empathetic preferences, which are determined by the satisfaction of their ac-
quaintances.

We start by focusing on the problem of group decision making on social
networks. Formally, the goal is to select a single alternative or decision from
a set of options for some group connected by a social network, e.g., a local
constituency electing a political representative; friends selecting a vacation
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spot or a movie; selecting a policy for an online system or a nation given in-
dividuals’ preferences, etc. While individuals have personal intrinsic utility
over the options, we also incorporate a novel form of empathetic utility on
social networks: the utility (or satisfaction) of an individual with an alter-
native a is a function of both her intrinsic utility for a and her empathetic
utility for the “happiness” of her neighbors with the selected option. Empa-
thetic utility in this sense reflects the fact that a person’s happiness may be
influenced by the happiness of others with whom they are connected [9].

We consider two varieties of empathetic preference. In our local empa-
thetic model, the utility of individual i for alternative a combines her intrinsic
preference for a with the intrinsic preference of i’s neighbors for a, where the
weight given to j’s preference depends on the strength of the relationship of
i with j. For example, when choosing a restaurant, an individual i may be
willing to sacrifice a small amount of personal, intrinsic utility to accommo-
date the preferences of her colleagues, and may be being willing to defer even
further if the group consists of close friends. In our global empathetic model,
i’s utility for a depends on her intrinsic preference and the total utility of her
neighbors for a (not just their intrinsic preference): she wants her neighbors
not only to be satisfied with a, but to have high utility, which depends on
the utility of their neighbors, and so on.

There are a number of real-world scenarios that illustrate this property.
For example, in an election an individual i may have a slight preference for
candidate a over candidate b, but if b is strongly preferred by her closest
neighbors, their neighbors, etc., then she may prefer to see b elected so as
to ensure community cohesiveness. In a different scenario, companies linked
in complex supply chains may care about the success of their suppliers and
customers, and hence consider adopting industry-specific or economic policies
in that light.

In the global model, because individual utilities are interdependent—
indeed, utility spreads much like PageRank values [10]—it requires the so-
lution of a linear system to determine equilibrium utilities. We describe
conditions under which such equilibria or fixed points exist, hence, when em-
pathetic utilities are well-defined. In particular, the conditions capture pos-
itive correlations between the utilities of neighbors in social networks (i.e.,
an individual’s utility doesn’t decrease when its neighbor’s utility increases),
and bounded degrees of selflessness (i.e., an individual is not completely in-
different to his/her own intrinsic preferences). These conditions often hold
in casual group decisions (e.g., where to eat, vacation, etc.), corporate de-

3



cisions, or other group-decision making scenarios, where individuals do not
derive satisfaction from decreasing utility of others (e.g., jealousy or envy),
nor are completely selfless (i.e., do not ignore their own intrinsic or personal
preferences).

We devise methods for computing social-welfare maximizing outcomes
under both local and global models. We show that social-welfare maximiza-
tion in both models can be recast as weighted preference aggregation over
intrinsic preferences alone, where weights are determined by social network
structure, but observe that the computation of weights is significantly differ-
ent in each model. Furthermore, we develop two scalable iterative algorithms
for group decision making under the global model.

We run extensive experiments on randomly generated social networks
with synthetic and real-world preferences. Our results confirm that neglect-
ing empathy usually yields sub-optimal group decisions which degrade the
well-being of group members. For example, in some experimental settings,
ignoring empathetic preferences yields decisions that are often suboptimal
and give rise to significant social welfare loss. Our experiments also show
that, both the distribution of empathetic preferences across the group or
population and the structure of the social network play an important role in
determining how empathetic preferences influence optimal group decisions.
Finally, our experiments demonstrate the computational effectiveness of our
algorithms.

After reviewing the related work in Section 2, we outline our empathetic
framework for consensus decision making in Section 3. We develop algorithms
for this problem in Section 4. We present experiments and empirical analyses
in Section 5. Finally, Section 6 concludes this paper and presents possible
future research directions.

2. Related Work

The term empathy is used in several different ways in the literature [11].
Sometimes it refers to “seeing the world through the eyes of others” without
being affected by this view, and such preferences [12] or “extended sympa-
thy” [13, 14] is used to frame interpersonal comparison of utilities [15, 12].
However, our model is more consistent with an affective understanding of
another, and having concern for that person’s welfare [16], or having “other-
regarding” preferences [17]. Empathy has recently drawn attention in neu-
roeconomics and social neuroscience [18] as a means to explain the extent

4



to which people can place themselves in the position of others and share an-
other’s feelings. This further motivates the computational study of empathy
and its application to social choice.

The impact that the actions and utilities of others has on an agent is
considered in certain economic models (see, e.g., accounts of envy, sympa-
thy/empathy in various contexts [19, 17, 12]). Most closely related to our
work is the model of Maccheroni et al. [19], who establish the axiomatic
foundations of interdependent “other-regarding” preferences in which the
outcome experienced by others affects the utility of an agent. In their gen-
eral formulation, the utility of an agent for an act incorporates both its
subjective expected utility for that act and an expected externalities function
over the agent’s perceived social value of its own act and others’ acts. While
the general form of these externalities can model our notion of empathy, the
specific axioms proposed for that model preclude its direct application to
our setting. For example, their anonymity axiom prevents the agent from
distinguishing which of its peers attains a specific outcome. Furthermore,
the work of Maccheroni et al. does not deal with group decision making and
relevant algorithm development, which is the main focus of our work.

Models of opinion formation and social learning in social networks are
also related (see [8, 20] for a review). Our empathetic model can be viewed
mathematically as a special case of a general model of opinion formation due
to Friedkin and Johnson [21]. However, their focus is very different than
ours. Friedken and Johnson explore the propagation of opinions and beliefs
on social networks, while we capture preference interdependence as a form
of empathy, and focus on algorithms and mechanisms to implement a given
social choice function.

Our empathetic model bears some resemblance to centrality measures in
social and information networks which use (self-referential) notions of node
importance. Some well-known examples include eigenvector centrality [22],
hubs and authorities [23] and PageRank [10] (see [7, 8, 24] for a review).
Apart from conceptual differences and the fact that we address decision
problems, a key technical distinction is the use of self-loops in our empathetic
model, which allows each node to contribute intrinsic utility to its fixed-point
value. We again emphasize that much of the literature on centrality metrics
does not address group decision making problems or algorithms.

Empathetic utilities can also be viewed as a form of externality in an
agent’s utility function, though unlike typical models of allocative externali-
ties, an agent’s utility depends on the utility of her neighbors for the chosen
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alternative rather than the behavior of, or the (direct) allocation made to,
her neighbors. We formally discuss these distinctions further in Section 3.2.
Decision making on social networks in the presence of allocative externali-
ties has recently attracted considerable attention. The literature has tackled
various computational social choice problems such as stable matching [25],
coalition formation [26, 27, 28], voting [29, 30, 31, 32, 33], auction design [34],
and resource allocation [35] on social networks in the presence of allocative
externalities. In the remainder of this section, we elaborate on this strand
of related work. However, again our work differs in its emphasis on the de-
velopment and analysis of empathetic models for group decision making and
corresponding algorithm design.

Bodine-Baron et al. [25] study stable matchings (e.g., of students to res-
idences) with peer effects : these local social network externalities reflect the
fact that students prefer to be assigned to the same residence as their friends.
Brânzei and Larson address coalition formation on social networks where an
agent’s utility for a coalition depends on either her affinity weights with oth-
ers in the coalition [26]; or her closeness centrality measure [27] (closeness
centrality measures how close a given node is to other nodes in the network).
Hoefer et al. [36] have also studied the computational complexity and prop-
erties of coalitions on social networks under considerate equilibria, in which
an agent avoids taking actions that might harm its neighbors. Recently, con-
siderate equilibria have been studied in strategic voting on social networks
[37].

Bhalgat et al. [35] focus on utilitarian social welfare maximization in unit-
demand resource allocation problem in the presence of positive externalities
arising from social networks. In their model, each agent’s overall utility is the
multiplication of its intrinsic valuation function—mapping each alternative
to a utility value—and its externalities function. The externalities function
maps the number of neighbors with the same assigned alternative to a real
value. There has also been growing interest in price setting [38, 39, 40],
object swapping [41], and strategic marketing [42, 43] over social networks,
which can be viewed as a form of decision making.

Boldi et al. [29, 30] study delegative democracy on social networks, where
an individual can either express her preferences directly, or delegate her vote
to a neighbor. The weights of delegated votes are exponentially damped by
an attenuation factor that reduces the weight of a vote as it passes from one
person to another. In a game-theoretic framework, Alon et al. [32] studied
the “herding effect” in sequential voting over only two alternatives, with
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Figure 1: A social network with ranked preferences, with weights under the local and global
empathetic model.

agents having private preferences for alternatives and experiencing disutility
if the winner is not the alternative for which they vote. Mechanism design
for approval voting in social network has been studied by Alon et al. [44],
where an edge in the underlying social network represents “who approves of
whom.”

Salehi-Abari and Boutilier [31] study voting on social networks when deal-
ing with missing preferences. They develop probabilistic models [45] and
design inference algorithms for making group decisions when some (or all)
preferences of group members are unknown but the social network is ob-
served. Their empirical analyses demonstrate that incorporating social ties
can significantly improve predictions and group decision making. Tsang et
al. [33, 46] study strategic voting on social networks with the presence of ho-
mophily. By observing their direct neighbors’ ballots, voters can strategize
their votes. Their analysis suggests that homophily reduces the frequency
of strategic voting. See the recent survey by Grandi [47] for further related
work of social choice on social networks.

3. Modeling Empathetic Agents in Social Networks

We introduce the basic model of empathetic preferences in social net-
works, first distinguishing local and global preferences, and then relating our
approach to models of allocative externalities.
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3.1. Local and Global Empathetic Preferences

We assume a set N = {1, . . . , n} of agents and a set A = {a1, . . . , am} of
alternatives or outcomes. Agents in N have preferences over the alternatives
A which are captured by utility functions. Let uj : A 7→ R be the utility
function of agent j ∈ N . Furthermore, we assume that the agents are empa-
thetic, meaning that their utility for that alternative depends on both their
intrinsic utility for the alternative, and also that of other agents. We model
this by a directed weighted graph G = (N , E) where an edge (j, k) indicates
that j’s utility is dependent on its neighbor k’s utility, with the strength of
the dependence is given by the edge weight. We allow for self-loops; i.e.,
edges of the form (j, j). We treat missing edges as having weight 0. Thus,
we can represent G by a weighted adjacency matrix W = [wjk].

Figure 1(a) illustrates our empathetic model. There are four agents, 1
through 4, and three alternatives a, b, and c. Each agent has (qualitative)
preferences represented as a ranking over the alternatives. For example,
agent 1 prefers alternative a to b, and b to c. The ranking preferences can
be converted to utilities using any scoring rules (e.g. Borda or Plurality).
We note, for example, that the edge between agent 2 and agent 3 has weight
0.7. This means that agent 2’s overall utility heavily depends on the utility
of agent 3 with respect to the final outcome selected. This example reflects
important aspects of various real-world scenarios. For example, imagine a
family of four, with different degrees of empathy toward each other, trying
to select a restaurant at which to eat. While each individual has a personal
preference over the restaurant choice, family members are also influenced by
how much the others will like the choice.

We decompose the utility function of each agent j into two components.
Given alternative a ∈ A, agent j derives intrinsic utility, uIj (a) from the al-
ternative consistent with its underlying intrinsic preferences, and empathetic
utility ejk(a) from other agents k ∈ N .2 In particular, the utility of agent j,
given alternative a, is

uj(a) = wjju
I
j (a) +

∑
k 6=j

wjkejk(a). (1)

2The assumption that preferences can be broken to intrinsic preferences and some
form of exogenous preferences is explored in the literature on allocative externalities (for
example, see [25, 35] and related work therein).
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The ratio of wjj to
∑

k 6=j wjk captures the relative importance of intrinsic
and empathetic utility to j. We note that our framework does not impose
empathetic preferences on agents: fully self-regarding agents are represented
by isolated nodes with self-loops.

An agent’s intrinsic preference depends solely on the particular alternative
under consideration, and is independent of the preferences of its neighbors.
One can easily distinguish between intrinsic preferences and empathetic pref-
erences by observing how an agent’s preferences change when they are in a
social setting compared to when they are in isolation. For example, an indi-
vidual, knowing that they will watch a movie alone, may reveal an intrinsic
preference for horror films, while in a particular group setting they may prefer
action movies. Intrinsic preferences can also be elicited through well-formed
elicitation queries or with observations of how an agent interacts with the
underlying set of alternatives in different contexts, particularly when acting
independently.

Let u = (u1(·), . . . , un(·)) be a vector specifying the utility function of
each agent. Given u, the (utilitarian) social welfare of alternative a is:

sw(u, a) =
∑
j

uj(a). (2)

We consider two different empathetic models. In the local empathetic
model, we let ejk(a) = uIj (a), implying that given alternative a, the utility
of agent j is a weighted sum of its own and its neighbors’ intrinsic utilities.
That is

uj(a) =
∑
k∈N

wjku
I
j (a). (3)

Equivalently, if we define u(a) to be the n-vector of agent utilities for
outcome a and uI(a) the n-vector of intrinsic utilities for the outcome, then

u(a) = WuI(a) (4)

where W is the weight matrix defined above. Defining

ω>l = e>W, (5)

where e is a column vector of ones of suitable dimension, the local social
welfare of alternative a is

swl(u, a) = ω>l uI(a). (6)
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In other words, local social welfare maximization can be expressed as the
weighted maximization of intrinsic preferences, where the weight of agent j’s
intrinsic utility is the sum of its incoming edge weights. Figure 1(b) shows
the weights for each agent computed under the local empathetic model for
the network in Figure 1(a). The local empathetic model captures scenarios
where an agent is concerned about the direct preferences of its neighbors.
For example, when choosing a movie for a family movie-night, the utility a
parent derives from a movie choice may depend heavily on how entertaining
the children find the movie.

In the global empathetic model, we define ejk(a) = uk(a) so that agent k’s
overall utility for an alternative a—which may depend on k’s neighbors—
influences j’s utility. This gives rise to

uj(a) = wjju
I
j (a) +

∑
k 6=j

wjkuk(a). (7)

In the notation of Equation 4, and defining D to be an n × n diagonal
matrix with djj = wjj, we have

u(a) = (W −D)u(a) + DuI(a). (8)

This model captures scenarios where an agent’s utility depends on the
total utility of her neighbors, not just their intrinsic preferences, which in
turn depends on the utilities of their neighbors, an so on. For example,
companies linked in a complex supply chain may care about the success of
their suppliers and customers, and so may consider adopting policies that
lead to outcomes which are beneficial to all.

One challenge with our formulation of global empathetic utility is that
Equation 8 may not have a unique solution. This is illustrated with the
simple example of two agents, 1 and 2, with w11 = w22 = 0, w12 = w21 = 1
and any intrinsic utility functions. This results in a continuum of solutions
where u1(a) = u2(a). However, if the underlying graph G has some additional
properties then uniqueness of global empathetic utilities can be guaranteed.

Property 1. (Non-negativity) Given graph G = (N , E), its weight matrix
W is non-negative if wjk ≥ 0 for all j, k ∈ N .

The implication of non-negativity is that an individual agent’s utility
cannot degrade as the utilities of other agents in the system improve. While
this property means that our model can not capture all group dynamics,
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particularly those where individuals are spiteful or envious of others, the
space of decision-making scenarios where this property does hold is still very
rich. Some problems from the resource-allocation literature that focus on
social-welfare maximization satisfy this property, as well as group decision-
making scenarios among agents who are not negatively disposed toward each
other, as one would expect among functional groups of friends, colleagues, or
neighbors. Non-negativity is satisfied in the family decision making example
in Figure 1.

Property 2. (Positive Self-loop) Given graph G = (N , E), its weight
matrix W satisfies positive self-loop if wjj > 0 for all j ∈ N .

This property ensures that agents are not entirely selfless—they do care
about their own intrinsic utilities to some extent. This condition is a natural
constraint and is often satisfied in decision-making scenarios where agents
cannot opt out. For example, in casual group decisions like restaurant choice,
an individual derives some intrinsic value from the restaurant itself; or in
supply-chain settings, a firm experiences direct ramifications of particular
decisions, no matter how it affects other firms. Positive self-loop is satisfied
in Figure 1.

Property 3. (Normalization) Given graph G = (N , E), its weight matrix
W is normalized if

∑
k∈N wjk = 1 for all j ∈ N .

As long as weights are bounded from above and there are positive self-
loops, it is always possible to normalize any W. The example in Figure 1
satisfies this property.

Proposition 3.1. Let G = (N , E) with weight matrix W. If W is non-
negative, normalized and satisfies positive self-loop, then the linear system

u(a) = (W −D)u(a) + DuI(a), ∀a ∈ A,

has a unique solution for u, where D is an n× n diagonal matrix with djj =
wjj and uI(a) is the n-vector of intrinsic utilities for the outcome a. In
particular,

u(a) = (I−W + D)−1DuI(a), ∀a ∈ A.
Proofs of all main results can be found in Appendix Appendix B.
As in the case of local social welfare, computing maximum global social

welfare can also be seen as a weighted maximization of intrinsic preferences.
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Social Welfare
Alternative Intrinsic Utility Local Empathetic Global Empathetic

a 5 3.3 2.6235
b 4 5.1 4.3796
c 3 3.2 4.9969

Table 1: Social welfare of alternatives under different models of empathy. The numbers in
bold correspond to the optimal social welfare under the different models.

Corollary 3.1. Given G = (N , E) with weight matrix W, if W is non-
negative, normalized and satisfies positive self-loop, then the global social
welfare of alternative a is given by

swg(u, a) = ω>g uI(a) (9)

where
ω>g = e>(I−W + D)−1D. (10)

Figure 1(c) shows the weights for each agent computed under the global
empathetic model, given the network in Figure 1(a).

For decision making, we are typically interested in alternatives or out-
comes that maximize utilitarian social welfare and this is our focus. For a
given u, define the optimal alternative to be

a∗ = arg max
a∈A

sw(u, a). (11)

While we emphasize utilitarian social welfare in this work, our empathetic
models can be applied to other social welfare functions or objectives readily.

The importance of accounting for empathy can be illustrated by a simple
example where the social-welfare maximizing alternative changes depending
on whether empathetic preferences are modeled appropriately. Consider the
agents in Figure 1(a), and furthermore assume that their intrinsic utility
functions are linear; specifically, an agent’s most preferred alternative has a
utility of two, its second-most preferred alternative has utility one and its
least preferred has utility zero. Thus, for example, uI1(a) = 2, uI1(b) = 1 and
uI1(c) = 0. Table 1 shows the utilitarian social welfare of each alternative
if only intrinsic utilities are used (first column), if a local empathetic model
is used (second column), and if a global empathetic model is used (third
column). Social welfare for the local and global models are calculated using
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Equations 6 and 9, respectively, with weights shown in Figures 1(b) and 1(c).
Not only does the social welfare for the different alternatives vary with the
empathetic model used, but the social-welfare maximizing choice differs in
each model. This illustrates that if empathetic preferences are not modeled
appropriately and fail to reflect the true preferences of individuals, the op-
timal (i.e., social-welfare maximizing) decision under the model used will
generally differ from the social-welfare maximizing option relative to these
true preferences.

We place no particular restrictions on the alternative or outcome space,
A, and thus we can use our empathetic model to capture a wide range of
applications. For example, in a group-recommendation problem or a voting
problem, our alternative space A consists of the different alternatives or
candidates which, once chosen, would be imposed on the group of agents.
On the other hand, in allocation problems, A is generally defined by the
space of (feasible) allocations a = (a1, . . . , an) where ai is the set of items
assigned to agent i. In such a setting, agent i’s intrinsic utility function
would capture its valuation for ai, with no further adjustments required to
the empathetic model itself. For example, given a = (a1, . . . , an) where each
ai is the allocation to agent i, we define the global empathetic utility of an
agent j as

uj(a) = wjju
I
j (a

j) +
∑
k 6=j

wjkuk(a).

Thus, as above, social welfare for a particular allocation a takes the form
swl(u, a) = ω>l uI(a) and swg(u, a) = ω>g uI(a) for local and global empathy,
respectively, where ωl and ωg are defined in Equation 5 and Equation 10,
respectively, and uI(a) =

(
uI1(a

1), · · · , uIn(an)
)

reflects intrinsic allocation
utility.

3.2. Empathetic Preferences and Allocative Externalities

Empathetic utilities can be viewed as a form of externality on an agent’s
utility function. But unlike typical models of allocative externalities, an
agent’s utility depends on the utility of her neighbors for the chosen al-
ternative rather than the behavior of, or the (direct) allocation made to, her
neighbors. More specifically, individual i’s extrinsic utility in our empathetic
model derives from i’s neighbors’ utilities, whereas in the allocative external-
ities model, extrinsic utilities are often determined by similarity/dissimilarity
(or distance) between i’s assignment and each of its neighbors’ assignments.

13



To crystallize this distinction, we show that the empathetic model cannot be
subsumed by a general allocative externalities model.

We adopt the model of metric labeling as a general model for allocative
externalities [48].3 This model is also used for studying strategic behaviors in
the presence of allocative externalities [49], and generalizes other allocative-
externality models such as that of Bodine-Baron et al. [25].

Definition (Generalized Allocative Model.) The utility of individual
i for allocation x = (x1, . . . , xn) under the metric labeling model can be
written as

ui(x) = wiiu
I
i (x

i) +
∑
j

wiju
′(xi, xj), (12)

where xi represents the assignment (or label) of individual i, uIi (.) is i’s
intrinsic utility function, wij is the weight of the edge between i and j, and
u′(xi, xj) is its extrinsic utility. Letting β0 ∈ R and β1 ∈ R+ be constants,
the extrinsic utility u′(xi, xj) = β0 − β1d(xi, xj) is the linear function of the
distance between xi and xj, denoted by d(xi, xj).

The closer xi and xj, the greater the corresponding extrinsic utility i
realizes for agent j’s allocation. Note that d(., .) is a valid distance metric
satisfying non-negativity d(y, z) ≥ 0, identity of indiscernibles d(y, z) = 0⇔
y = z, and symmetry d(y, z) = d(z, y).

As an example of generality of this model, the model of Bodine-Baron et
al. [25] can be derived by using the discrete metric in the model and letting
β0 = 0 and β1 = 1.

Proposition 3.2. The empathetic model is not subsumed by the metric la-
beling model.

4. Computing Social-Welfare Maximizing Outcomes

Given our general framework for representing empathetic preferences, a
key question is how to use it effectively to make group decisions, specifically,

3The metric labeling problem is typically formulated based on a node’s costs and pair-
wise disagreement penalties/costs. However, we can represent this model equivalently
using the concept of utility to be consistent with the terminology used in this paper.
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to compute social-welfare maximizing alternatives that account for empathy.4

Recall that, in both the local and global empathetic models, finding the
socially optimal outcome is computationally equivalent to a weighted social
welfare maximization problem. The computation of weights in the local
model is computationally inexpensive, while weight computation and social-
welfare maximization are more computationally challenging in the global
model. To address this, we propose two new algorithms for finding global-
empathetic optimal outcomes.

Recall that the social welfare of alternative a is defined as sw(u, a) =
ω>uI(a) where the definition of ω depended on whether we were interested
in local or global empathy. Thus, given intrinsic utility functions uI and ω,
the optimal alternative is

a∗ = arg max
a∈A

ω>uI(a). (13)

If ω is given, the alternative a∗ can be found in O(nm) time where n is
the number of agents and m is the number of alternatives. We note that,
while O(nm) provides an accurate reflection of complexity in some domains
(e.g., voting problems where the set of alternatives is explicitly enumerated),
when the alternative space A is combinatorial (e.g., allocation and matching
problems), this direct optimization approach may not be viable since the
number of alternatives m is itself exponential (or worse) is certain domain
features.

The computation of ω itself is potentially computationally expensive, es-
pecially in the global empathetic model. We focus on two approaches in the
development of our algorithms for empathetic optimization. In the first, we
decouple the computation of ω from the underlying optimization problem
and develop efficient algorithms for weight computation under both the local
and global models. These weight-computation algorithms can be viewed as a
pre-processing step for any social-welfare maximization algorithms (in Equa-
tion 13). In the second approach, we develop an algorithm for computing a∗

without explicitly computing ω. This algorithm is well-suited for problems
with tractably-enumerable alternative sets.

4Although we focus on maximizing social welfare, our general empathetic framework
can be adapted easily to maximizing egalitarian welfare or the Nash product. This would
require some additional algorithmic development of course. These social welfare functions
might be better-suited to group decision making problems in which fairness is a primary
concern.
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4.1. Local Empathetic Preferences

Recall that under the local model, ω = ωl = e>W (see Equation 5).
Thus, computing ω> requires only a single vector-matrix multiplication, tak-
ing O(n2) time. However, social networks are generally sparse, with the
number of incoming edges to any node j typically bounded by some small
constant. In such sparse networks, ω can be computed in time O(n) since ωj
is simply the sum of j’s incoming edge-weights; hence, a∗ can be determined
in time O(nm). Thus the complexity of finding social-welfare maximizing
alternatives under the local empathetic model is often no different than any
weighted social welfare computation.

4.2. Global Empathetic Preferences

In the global empathetic model, the social welfare problem uses weights

ω> = ω>g = e>A−1D,

where A = I −W + D is as described in Corollary 3.1. The difficulty here
lies largely in matrix inversion. A−1 can be computed via Gauss-Jordan
elimination which has complexity O(n3), implying that a straightforward
computation of the optimal alternative requires O(n3+nm) time. In general,
matrix inversion is no harder than matrix multiplication [50, Theorem 28.2],
but its complexity cannot be less than O(n2) since all n2 entries must be
computed. Therefore, straightforward computation of a∗ in the global model
cannot have complexity less than O(n2 + nm).

We expect n to be extremely large in many social choice problems on
social networks, e.g., in the tens of thousands (number of people in a small
town), the millions (large cities), or hundreds of millions (large country, num-
ber of Facebook or Twitter users). Examples of such social choice problems
on social networks include local constituencies electing a political represen-
tative; a company deciding on assigning an advertisement to a group of users
based on the relevance of ads and user preferences; selecting a privacy pol-
icy for an online system; or selecting economic or health-care policies for a
nation.

For large n, algorithms that scale linearly (or better) in n are needed.
Many iterative methods have been proposed for matrix inversion and solving
linear systems (e.g., Jacobi, Gauss-Siedel, etc.) which haveO(n) per-iteration
complexity in sparse systems and tend to converge very quickly in practice
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(see [51] for an overview). In the rest of this section we investigate itera-
tive methods which can be used for both finding social-welfare maximizing
alternatives and computing the social-weight matrix ωg.

4.2.1. Finding Social Welfare Maximizing Outcomes

We first introduce an algorithm for finding the social-welfare maximizing
alternative without directly computing the social weight matrix ωg. In par-
ticular, we use an iterative method for computing u(a). Let u(t)(a) be the
vector of estimated utilities for alternative a after t iterations, with u(0)(a)
being arbitrary.

Theorem 4.1. Given graph G = (N , E) with weight matrix W, alternative
set A and intrinsic utilities uI , consider the following iteration:

u(t+1)(a) = (W −D)u(t)(a) + DuI(a). (14)

Assuming non-negativity, normalization, and positive self-loop, this method
converges to u(a), the solution to Equation 8.

For each j ∈ N , the method computes:

u
(t+1)
j (a) = wjju

I
j (a) +

∑
k 6=j

wjku
(t)
k (a), (15)

where u
(t)
j (a) is agent j’s estimated utility for a after t iterations. This scheme

has a natural interpretation in terms of agent behavior—we can suppose that
each agent repeatedly observes her friends’ revealed utilities, and updates her
own utility for various options in response. This process converges, even if the
updates are asynchronous. Under this iterative process, the local empathetic
model provides a first-order approximation to the global model if we simply
let u

(0)
k (a) = uIk(a). In other words, with this initialization, after the first

iteration, we have computed the utilities for the local model. Critically, the
error in the estimated utilities at the tth iteration can also be bounded:

Theorem 4.2. In the iterative scheme described in Theorem 4.1,∥∥u(a)− u(t)(a)
∥∥
∞ ≤ (1− w̃)t

∥∥u(a)− u(0)(a)
∥∥
∞ ,

where w̃ = min1≤i≤nwii.
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Here we use the supremum norm ‖A‖∞ = max
1≤i≤m

∑n
j=1 |aij|. This theorem

shows that the approximation error at the tth iteration is bounded above
by the product of the initial approximation error

∥∥u(a)− u(0)(a)
∥∥
∞ and a

damping factor (1− w̃)t which depends on the minimum self-loop weight in
the system. In particular, systems in which individuals have high self-loop
weights (and, thus, exhibit less empathy) will converge faster than systems
with greater empathy.

The bound in Theorem 4.2 allows us to bound the error in estimated social
welfare if the utilities of all options are estimated this way. Let sw (t)(a) =∑

j u
(t)
j (a).

Theorem 4.3. Assume uIj (a), u
(0)
j (a) ∈ [c, d], for all j where c ≤ d are

constants. If the properties of normalization, non-negativity, and positive
self-loop hold, then

∣∣sw(a)− sw (t)(a)
∣∣ ≤ n(d − c) (1− w̃)t, for all t, where

w̃ = min1≤i≤nwii.

An immediate consequence of this result allows us to compare the social
welfare of different alternatives.

Proposition 4.4. Under normalization, non-negativity, and positive self-
loop, if

sw (t)(b)− sw (t)(a) ≥ 2n(d− c) (1− w̃)t (16)

then sw(b) > sw(a).

We exploit Proposition 4.4 in Iterated Candidate Elimination (ICE), a
simple algorithm for computing a∗. The intuition underlying ICE is straight-
forward: we iteratively update the estimated utilities of the subset C ⊂ A of
options that are non-dominated, and gradually prune away any options that
are dominated by another until only one, a∗, remains.

The pseudo-code for the algorithm is provided in Algorithm 1 ICE first
initializes the set of non-dominated alternatives to be C = A, and sets
u
(0)
j (a) = c for all j ∈ N , a ∈ A, where c is a lower bound on intrinsic

utility. An iteration of ICE consists of:

1. updating estimated utilities using Equation 15 for all j ∈ N and a ∈ C;

2. computing estimated social welfare of each a ∈ C;

3. determining the maximum estimated social welfare ŝw (t);
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Algorithm 1: Iterated Candidate Elimination (ICE)

input : Graph G, intrinsic utilities uIi (a), ∀i ∈ N , ∀a ∈ A.
output: Alternative a∗.
Initialize u

(0)
i (a)← c, ∀i ∈ N and ∀a ∈ A;

// C is the possible winner candidate set

C ← A;
w̃ = min1≤i≤nwii;
t← 0;
while size(C) > 1 do

t← t+ 1;
foreach a ∈ C do

sw (t)(a)← 0;
foreach j ∈ N do

u
(t)
j (a)← wjju

I
j (a) +

∑
k:(j,k)∈E,j 6=k wjku

(t−1)
k (a);

sw (t)(a)← sw (t)(a) + u
(t)
j (a);

ŝw (t) ← maxa∈C sw (t)(a);
foreach a ∈ C do

if ŝw (t) − sw (t)(a) ≥ 2n(d− c) (1− w̃)t then
C ← C − {a}

return a∗ ∈ C

4. testing each a ∈ C for domination, i.e.,

ŝw (t) − sw (t)(a) ≥ 2n(d− c) (1− w̃)t ;

5. eliminating all dominated options from C.

The algorithm terminates when one option a∗ remains in C.5 ICE runs in
O(tm|E|) time, where t is the number of iterations required; and if the num-
ber of outgoing edges at any node is bounded by some constant, running time
is O(tmn). As we demonstrate in our experiments, ICE converges quickly in

5The correctness (and termination) of ICE relies on the assumption that there is a
unique social-welfare maximizing alternative. In practice, this assumption is satisfied for
large groups with high probability. If this does not hold, we can limit the maximum
number of iterations.
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Figure 2: A social network with agents’ intrinsic utilities.

t = 0 1 2 3 4 5

u
(t)
1 (a),u

(t)
1 (b) 0,0 0.3,0 0.51,0 0.51,0.441 0.525,0.441 0.535,0.441

u
(t)
2 (a),u

(t)
2 (b) 0,0 0.3,0 0.3,0.63 0.321,0.63 0.336,0.63 0.336,0.661

u
(t)
3 (a),u

(t)
3 (b) 0,0 0,0.9 0.03,0.9 0.051,0.9 0.051,0.944 0.052,0.944

sw (t)(a),sw (t)(b) 0,0 0.6,0.9 0.84,1.53 0.882,1.971 0.911,2.015 0.923,2.046

ŝw (t) − sw (t)(a) — 0.3 0.69 1.089 1.103 1.123

ŝw (t) − sw (t)(b) — 0 0 0 0 0
6(0.7)t 6 4.2 2.94 2.058 1.4406 1.00842

Table 2: The computation steps for the ICE algorithm over the example presented in
Figure 2. The last row of the table corresponds to the right-hand side of Equation 16.

practice. Referring to Theorem 4.2, we see that the number of iterations t
depends on the structure of social network (specially, the minimum self-loop
weight) and the distribution of intrinsic preferences.

We illustrate ICE using the simple network in Figure 2. First, ICE ini-
tializes w̃ = 0.3 and C = {a, b}. Then, the algorithm iteratively computes
the estimated utilities and social welfare, as illustrated in Table 2, until
|C| = 1. After 5 iterations, the elimination condition for candidate a is met:
ŝw (5) − sw (5)(a) > 2n(d − c) (1− w̃)5 where 2n(d − c) (1− w̃)5 = 6(0.7)5.
Thus candidate a is eliminated from C and the algorithm terminates by
outputting b as the winner. We note that the algorithm did not compute
the social welfare of the alternatives directly, but still successfully found the
optimal alternative.

4.2.2. Computing Social Weights

The ICE algorithm finds the social-welfare maximizing alternative with-
out computing the social weight vector directly. However, there are scenarios
where the social weights themselves are of interest. In addition, as discussed

20



below, it may be more effective to compute social weights a priori and use
these to directly find optimal alternatives. In this section, we propose meth-
ods for computing weights, and develop Weight-Based Iterative Candidate
Elimination (WICE), an algorithm that uses these weights to compute the
social-welfare maximizing alternative.

We first note that the problem of weight computation involves solving a
linear system of equations:

Theorem 4.5. The vector ωg is the unique solution to the linear system of
Aωg = e where A = (I−W> + D)D−1.

We now briefly describe a standard Jacobi iterative method for estimating
weights ωg in the global model. Let ω

(t)
g be the estimated weights after t

iterations ( ω
(0)
g is arbitrary).

Theorem 4.6. Given graph G = (N , E) with weight matrix W, alternative
set A and intrinsic utilities uI , consider the following update:

ω(t+1)
g = D(W> −D)D−1ω(t)

g + De

Assuming non-negativity, normalization, and positive self-loop, this method
converges to ωg, the solution to linear system stated in Theorem 4.5.

For each j ∈ N , this iterative method computes

ω
(t+1)
j = wjj +

∑
k 6=j

wjj
wkk

wkjω
(t)
k (a), (17)

where ω
(t)
j is the agent j’s estimated societal weight after t iterations. One

can readily bound the error of the estimated weights after t iterations:

Theorem 4.7. Assume ω
(0)
g = (w11, w22, . . . , wnn)>. In the iterative scheme

of Theorem 4.6, ∥∥ωg − ω(t)
g

∥∥
1
≤ n

ŵ

w̃
(1− w̃)t (1− w̄),

where w̃ = min1≤j≤nwjj, ŵ = max1≤j≤nwjj, and w̄ = 1
n

∑
j wjj.
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Here, we use the 1-norm ‖A‖1 = max
1≤j≤n

∑m
i=1 |aij|. This iterative method

converges faster for societies in which individuals have self-loops with rela-
tively larger weight (i.e., less empathy) compared to societies with greater
empathy.

This error bound on ωg allows one to bound the error in the estimated
social welfare of any a ∈ A:

sw (t)(a) =
∑
j

ω
(t)
j u

I
j (a).

Theorem 4.8. Assume ω(0) = (w11, w22, . . . , wnn)>. Under normalization,
non-negativity, and positive self-loop, for any t:

|sw(a)− sw (t)(a)| ≤ n
ŵ

w̃
(1− w̃)t (1− w̄)

∥∥uI(a)
∥∥
2
,

where w̃ = min1≤j≤nwjj, ŵ = max1≤j≤nwjj, and w̄ = 1
n

∑
j wjj.

This bounds the error in estimated social welfare at iteration t. As t
grows, the error shrinks since 1− w̃ < 1. Due to having n and

∥∥uI(a)
∥∥
2

on
the right side, for larger n, we require a greater number of iterations to obtain
reasonable approximations. As a result of Theorem 4.8, we know that:

Proposition 4.9. Under normalization, non-negativity, and positive self-
loop, for any t, if

sw (t)(a)− sw (t)(b) ≥ n
ŵ

w̃
(1− w̃)t (1− w̄)

(∥∥uI(a)
∥∥
2

+
∥∥uI(b)∥∥

2

)
, (18)

then sw(a) > sw(b), for a, b ∈ A.

Using this proposition, by comparing the estimated social welfare of two
alternatives, one can assess the relative magnitude of their actual social wel-
fare. We exploit this below.

To demonstrate the practical impact of these theoretical results, our ex-
periments in the next section show how they can be used to solve a sim-
plified allocation problem. Moreover, we can use this weight approximation
in another iterative algorithm for consensus decision making. We call this
new algorithm weight-based iterated candidate elimination (WICE). The in-
tuition behind WICE is to iteratively update the estimated weights ω(t) and
accordingly calculate the estimated social welfare of the subset C ⊂ A of
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Algorithm 2: Weight-based Iterated Candidate Elimination (WICE)

input : Graph G, intrinsic utilities uIi (a), ∀i ∈ N , ∀a ∈ A.
output: Alternative a∗.

Initialize ω
(0)
j ← wjj , ∀j ∈ N ;

// C is the possible winner candidate set

C ← A;
w̃ = min1≤j≤nwjj ;
ŵ = max1≤j≤nwjj ;
w̄ = 1

n

∑
j wjj ;

t← 0;
while size(C) > 1 do

t← t+ 1;
foreach j ∈ N do

ω
(t)
j ← wjj +

∑
k 6=j:(k,j)∈E

wjj
wkk

wkjω
(t−1)
k ;

foreach a ∈ C do

sw (t)(a) =
(
ω(t)

)>
uI(a)

â = arg maxa∈C sw (t)(a);

ŝw (t) ← sw (t)(â) ;
foreach a ∈ C do

if ŝw (t) − sw (t)(a) ≥ n ŵw̃ (1− w̃)t (1− w̄)
(∥∥uI(â)

∥∥
2

+
∥∥uI(a)

∥∥
2

)
then
C ← C − {a}

return a∗ ∈ C

candidates that are non-dominated, and gradually prune away any candi-
date that is dominated by another until only one, a∗, remains.

Pseudo-code is presented in Algorithm 2. WICE first initializes C = A
and ω

(0)
j = wjj for all j ∈ N . An iteration of WICE consists of:

1. updating estimated weights using Equation 17 for all j ∈ N ;

2. computing the estimated social welfare of each a ∈ C;

3. determining the maximum estimated social welfare ŝw (t) and its corre-
sponding alternative â;

4. testing each a ∈ C for domination, i.e.,

ŝw (t) − sw (t)(a) ≥ n
ŵ

w̃
(1− w̃)t (1− w̄)

(∥∥uI(â)
∥∥
2

+
∥∥uI(a)

∥∥
2

)
;
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t = 0 1 2 3 4 5 6

ω
(t)
1 0.3 0.33 0.351 0.365 0.367 0.368 0.368

ω
(t)
2 0.3 0.51 0.531 0.545 0.556 0.557 0.557

ω
(t)
3 0.9 1.53 1.971 2.0151 2.046 2.067 2.070

sw (t)(a) 0.6 0.84 0.882 0.910 0.923 0.925 0.925

sw (t)(b) 0.9 1.53 1.971 2.015 2.046 2.067 2.070

ŝw (t) − sw (t)(a) — 0.69 1.089 1.105 1.123 1.142 1.145

ŝw (t) − sw (t)(b) — 0 0 0 0 0 0
9(0.7)t 9 6.3 4.41 3.087 2.161 1.512 1.058

Table 3: The computation steps for the WICE algorithm over the example presented in
Figure 2. The last row of the table corresponds to the right-hand side of Equation 18.

5. eliminating all dominated candidates from C.

The algorithm terminates when only one candidate (i.e., a∗) remains in C.
The running time for each iteration of WICE is O(|E| + mn), where |E| is
the number of edges.6

We demonstrate the steps of WICE algorithm using the earlier example
in Figure 2. WICE initializes w̃ = 0.3, ŵ = 0.9, w̄ = 0.5, ω(0) = (0.3, 0.3, 0.9)
and C = {a, b}. It then iteratively computes the estimated societal weights
ω(t) and social welfare as illustrated in Table 3 until |C| = 1. After 6 itera-
tions, the elimination condition for candidate a is met; i.e., ŝw (t)−sw (t)(a) ≥
n ŵ
w̃

(1− w̃)t (1 − w̄)
(∥∥uI(â)

∥∥
2

+
∥∥uI(a)

∥∥
2

)
. So a is eliminated from C and

the algorithm terminates with b as the winner. As with ICE, WICE does not
compute social welfare exactly, but still finds the optimal alternative.

4.2.3. Comparison of ICE and WICE algorithms.

While both ICE and WICE use iterative approaches to find socially op-
timal alternatives, they are each useful in different contexts. If one is only
interested in finding an optimal alternative, ICE may be the appropriate
choice. However, in addition to finding the optimal alternative, one might be
interested in learning the social weights ωg (e.g., for understanding the extent
to which each individual influences the underlying group decision under our

6As discussed above for the ICE algorithm, the correctness (and termination) of WICE
assumes a unique social-welfare maximizing alternative, and violation of this assumption
can be addressed in the same fashion.
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empathetic dynamics). In such scenarios, WICE is the appropriate choice
since it computes social weights (and directly supports their approximation).

Even if the weights themselves are not required, WICE is often a more
valuable method for computing optimal outcomes. Comparing the per-
iteration running time of WICE and ICE iteration, O(|E|+mn) vs. O(|E|m),
respectively, we see that WICE has better performance than ICE when
|E| >> n. However, we expect ICE to converge much faster (in fewer it-
erations) than WICE by comparing their domination conditions, Proposi-
tion 4.4 and Proposition 4.9, respectively. Specifically, the right-hand side of
the inequality in Proposition 4.9 is much larger than that of Proposition 4.4,
largely due to the norms on intrinsic utilities. Thus, ICE is more efficient for
smaller numbers of alternatives, while WICE is well-suited for larger sets of
alternatives, and specifically for problems where the alternative space cannot
be enumerated (e.g., in combinatorial problems such as allocation or match-
ing under constraints). Both methods scale reasonably well with network
size, especially if the number of edges is bounded. In the next section, we
compare the two algorithms empirically.

5. Empirical Results

We conduct experiments using randomly generated networks, and both
randomly generated and real-world intrinsic preferences. The overall aims
of the experiments are two-fold: to analyze the computational performance
of our algorithms, and to contrast the decisions that result when using a
standard non-empathetic approach to social-welfare maximization (i.e., using
intrinsic utility only) with those that result when using the local and global
empathetic models.
Experimental Setup. We assume that individual intrinsic utilities arise
from an underlying preference ordering over A.7 In all experiments, we draw
a random ordering for each agent i using either: the impartial culture model

7We use qualitative preferences in experiments for two reasons. First, we demonstrate
that our models and results apply not only to utility-based group decision making, but
also to decision making with qualitative preferences (under suitable scoring). Second, the
lack of publicly available utility datasets has motivated us to take advantage of ranking
datasets (such as the Irish voting dataset described below). We do note the recent addition
of utility data to the PrefLib library, http://www.preflib.org/ and hope to examine this
in future work.
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[52], in which all rankings are equally likely; or the Irish voting data set,
which we explain in detail below. To draw connections to voting methods,
i’s utility for a is given by either the Borda or plurality score of a in its ranking
ri. Specifically, the Borda score function is defined by sB(a, ri) = m− ri(a)
and the plurality score function is sP (a, ri) = I[ri(a) = 1] where I[.] is an
indicator function [52]. As utilities, these embody very different assumptions:
Borda treats utility differences as linear, whereas plurality utility is “all or
nothing.” We also note that plurality has been widely-used in many group
decision settings (including elections) and Borda is a useful surrogate for
random utility models [53].

We generate random social networks using a preferential attachment model
for scale-free networks [54]:8 starting with n0 initial nodes, we add n nodes
one at a time, with a new node connected to k ≤ n0 existing nodes, where
node i is selected as a neighbor with probability deg(i)/

∑
j deg(j). We set

n0 = 2 and k = 1 in all experiments. We “direct” the graph by replacing
each undirected edge with the two corresponding directed edges—we add a
self-loop to each node with weight α; we then distribute weight 1−α equally
to all other out-going edges. Parameter α ∈ (0, 1] represents the degree of
self-interest, and 1 − α the degree of empathy. Unless noted, all experi-
ments have n = 1000 agents (nodes), α = 0.25, and are run over 50 random
preference profiles on each of 50 random networks (2500 instances).

Performance Metrics. To examine the importance of modeling empathy
in social choice, we distinguish actual user preferences—referred to as the
true model—from how preferences are modeled in a group decision-support
system—namely, the assumed model. Specifically, we let the true and as-
sumed models be any of our intrinsic (non-empathetic), local or global mod-
els, giving nine combinations. We are interested in the extent to which these
models disagree in their decisions, and the loss in social welfare that results
from such disagreement. If these differences are large, it indicates that, in sit-
uations where empathetic preferences exist, ignoring them by using classical
preference aggregation techniques will lead to poor decisions. Specifically, we
measure the percentage of decision disagreement (DD) (over 2500 instances
for each fixed setting of other parameters) in which the true and assumed
models propose different optimal decisions. We also measure the average loss

8This is only one of many models that can be used. Results are similar for other models.
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True Model
Assumed Model

intrinsic local global

intrinsic
— 1.4(9.9) 1.1(8.0)
— 28.4(100) 22.6(100)

local
2.9(19.3) — 0.1(3.2)
28.5(100) — 1.2(86.9)

global
1.8(12.7) 0.1(2.7) —
22.3(100) 1.1(97.0) —

Table 4: Average (maximum) RSWL (1st rows) and NSWL (2nd rows): Borda, m = 5,
Impartial Culture, n = 1000, α = 0.25, 2500 runs.

in social welfare incurred when making decisions using an assumed model that
differs from the true model. Let sw t(·) and swa(·) be social welfare under the
true and assumed models, respectively, and at and aa be the corresponding
optimal options (or winners). Rather than directly comparing social welfare
under various models, we define relative social welfare loss (RSWL) to be

RSWL =
sw t(at)− sw t(aa)

sw t(at)
.

We often report RSWL as a percentage. RSWL, by scaling differences in
social welfare, helps calibrate the comparison between experiments. We can
also normalize RSWL by considering the range of possible social welfare
values actually attainable. Let alternative a− have minimum social welfare
under the true model (so it is no better than the decision under the assumed
model). Normalized social welfare loss (NSWL) is

NSWL =
sw t(at)− sw t(aa)

sw t(at)− sw t(a−)
.

This offers a more realistic picture of loss caused by using an incorrect as-
sumed utility model (by comparing it to the loss of the worst possible decision
under the true model).

Impartial Culture. Our first experiment uses the impartial culture model
to generate preferences—each node/agents has its preference ranking over m
alternatives drawn uniformly at random from the space of all m! rankings.
We first consider RSWL and NSWL for all nine combinations of assumed and
true utility models. We fix m = 5 options and use Borda scoring. Average
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True Model
Assumed Model

intrinsic local global

intrinsic — 57.76 50.48
local 58.12 — 11.72

global 50.84 11.72 —

Table 5: Percentage decision disagreement (DD): Borda, m = 5, Impartial Culture, n =
1000, α = 0.25, 2500 runs.

(maximum) losses are reported in Table 4 while the decision disagreement
percentage is shown in Table 5. While RSWL is relatively small on average
(though maximum losses are quite large), this is largely due to the uniformity
of preferences generated by impartial culture—indeed, all options have the
same expected score. By normalizing, we obtain a more accurate picture
of the loss (relative to the worst possible decision) incurred by using non-
empathetic voting: average normalized loss shows that the “controllable”
error is quite large, especially when comparing the “standard” intrinsic model
to either of the empathetic models. Moreover, the intrinsic model chooses an
incorrect (sub-optimal) alternative in over half of all instances in both cases.
Interestingly, assuming either the local model or global model when the true
model is the other gives reasonable results: this means that the local model
offers a good first-order approximation to the global model.

Irish Voting Data. Impartial culture is often viewed as an unrealistic
model of real-world preferences. For this reason, we test our methods using
preferences drawn from the 2002 Irish General Election, using electoral data
from the Dublin West constituency, which has 9 candidates and 29, 989 bal-
lots of top-t form,9 of which 3800 are complete rankings.10 We assign full
rankings, drawn randomly from the set of 3800 complete rankings to nodes in
our network. Decision disagreement under both plurality and Borda scoring
(Table 6) is quite high, ranging from 22–46%. Average NSWL (shown in
Table 7) is not as high as with impartial culture (only in the range of 1–3%,
with maximum loss of roughly 40%).

The effect of m. Figure 3 shows the average RSWL and decision disagree-

9A top-t ballot is a ranking over the top-t most preferred options for a voter.
10The original datasets were obtained from www.dublincountyreturningofficer.com

and are currently available at PrefLib http://www.preflib.org/.
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True Model
Assumed Model

intrinsic local global

intrinsic — 27.3 / 46.1 22.3 / 39.0
local 28.0 / 46.3 — 5.6 / 8.6

global 22.9 / 39.3 5.5 / 8.6 —

Table 6: Percentage decision disagreement, plurality/Borda: West Dublin dataset, m = 9,
n = 1000, α = 0.25, 2500 runs.

True Model
Assumed Model

intrinsic local global

intrinsic — 1.9(34.8) 1.3(19.9)
local 2.7(39.6) — 0.1(7.1)

global 1.6(31.7) 0.1(8.8) —

Table 7: Average (maximum) NSWL: 2500 runs, Plurality, West Dublin dataset, m = 9,
n = 1000, α = 0.25.

ment (DD) for three “true vs. assumed” models as we increase the number
of alternatives m using plurality scoring. We observe that average RSWL
increases with m and approaches 70% when m = 200, while the optimal
decision is rarely made. NSWL for the intrinsic model (shown in Figure 4),
even at m = 5, averages 20–30%. With Borda scoring, the effect of m is much
less pronounced because of relatively small utility differences (or smoothing)
between adjacent candidates (intrinsic loss ranges from 20–30% across all
values of m), but the pattern of decision disagreement is almost identical to
plurality.

The effect of the scoring rule (from plurality to Borda). The exper-
iments above use both Borda (representative of smooth scoring rules) and
plurality (representative of sharp, all-or-nothing scoring rules). We now ex-
plore how RSWL changes when the scoring rule transitions from plurality to
Borda. We consider the τ−scoring rule

sτ (aj, r) = τ r(aj)−1(m− r(aj)),

where r(aj) represents the rank of alternative aj in ranking r and τ ∈ [0, 1].
Note that when τ = 1, the τ -scoring rule is equivalent to Borda whereas with
τ = 0, the τ -scoring rule is plurality.
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Figure 3: RSWL and decision disagreement (DD), plurality, n = 1000, α = 0.25, varying
m, 2500 runs.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

m
 = 5

m
 = 10

m
 = 20

m
 = 50

m
 = 100

m
 = 200

N
or

m
al

iz
ed

 S
oc

ia
l W

el
fa

re
 L

os
s 

(N
S

W
L) global vs. intrinsic

global vs. local   
local vs. intrinsic 

Figure 4: Average NSWL, impartial culture, and varying the number of alternatives m.

We set m = 10 and vary τ over the set {0, 0.2, 0.4, 0.6, 0.8, 1}. Figure 5
shows average (maximum, minimum) RSWL for three actual/assumed model
combinations for various τ values. We observe that plurality is more suscep-
tible to RSWL than Borda (compare τ = 0 with τ = 1). The change in
RSWL is almost linear when moving from plurality to Borda. This implies
that amongst the wide variety of scoring rules which exist between Borda
and plurality, those scoring rules which are closer to plurality incur higher
RSWL when compared to those are closer to Borda. These results suggest
that the sharpness or smoothness of scoring rule plays a role in RSWL—the
sharper the scoring rule, the higher RSWL.

The effect of self-loop weight α. In this experiment, we investigate the
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Figure 5: Average (maximum, minimum) RSWL (2500 runs): n = 1000, m = 10, τ -
scoring rule.

α 0.05 0.1 0.25 0.5 0.75

Borda 26.0 / 58.7 25.0 / 55.8 22.2 / 53.0 15.1 / 42.5 7.3 / 28.8
Plurality 28.8 / 59.8 26.7 / 58.1 22.7 / 53.8 16.9 / 46.9 7.8 / 31.3

Table 8: Average NSWL/decision disagreement: global vs. intrinsic, n = 1000, varying α,
2500 runs.

impact of empathy in the population by controlling the self-loop weight α—
higher α implies lower societal empathy. Varying α has a significant effect
on NSWL and decision disagreement when true utility is global but intrinsic
utility is assumed. Table 8 shows that, for both Borda and plurality, in-
creasing α (i.e., decreasing overall degree of empathy) decreases both NWSL
and DD. This is not surprising, as increasing α moves the empathetic model
closer to the intrinsic model. Similar trends hold for the local model. We
also examine a model in which nodes have different self-loop weights, drawing
each node’s α from a truncated normal distribution. As we vary the mean
µ, we see a similar trend in Table 9. The results confirm that self-loops are
an important factor in determining NSWL.

The effect of directionality. We now explore the effect of another aspect
of social network structure on NSWL. The results above use networks with bi-
directional edges (by replacing each undirected edge with two directed edges).
To explore how directionality impacts NSWL, we consider networks with
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µ 0.05 0.1 0.25 0.5 0.75

Borda 27.6 / 59.2 24.3 / 54.9 21.3 / 52.3 15.6 / 42.5 8.1 / 31.1
Plurality 27.2 / 58.6 24.5 / 55.5 23.3 / 54.7 16.5 / 46.1 8.0 / 31.5

Table 9: Average NSWL/decision disagreement: global vs. intrinsic, α drawn from trun-
cated Gaussian with mean µ and std. dev. 0.1, n = 1000, 2500 runs.
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Figure 6: Average NSWL, m = 10, n = 1000, α = 0.25, varying directionality parameter
γ, 2500 runs.

a hierarchical orientation, as often found in economic (e.g., supply chain),
organizational (management/employee structure), or some social networks
(e.g., forms of status, following, etc.). We replace each undirected edge in
the preferential attachment network with a directed edge from the “younger”
node to the “older.” The older node reciprocates with a directed edge to the
younger with probability γ. If γ = 1, our standard bidirectional network
results (as above); when γ = 0 we obtain a completely hierarchical network.

Fixing m = 10, Figure 6 depicts NSWL for both Borda and plurality as γ
varies. Networks that are more hierarchical have higher NSWL for the global
vs. intrinsic models, independent of the scoring rule, while NSWL for local
vs. intrinsic is almost constant. However, plurality seems more susceptible
to increasing loss due to hierarchical structure than Borda for all three com-
binations. Unlike earlier results, when the network is very hierarchical (e.g.,
γ = 0), the global and local models do not approximate each other well.

Our results demonstrate that the directionality of social networks has a
significant impact on NSWL. Specifically, social networks with a more hi-
erarchical structure have higher NSWL. This finding highlights the special
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α 0.05 0.1 0.25 0.5 0.75

Borda 104.1 51.4 19.5 8.7 4.7
Plurality 98.7 48.6 18.6 8.3 4.6

Table 10: Average number of iterations for ICE, m = 10, n = 1000, varying α, 2500 runs.
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Figure 7: Estimated social welfare vs. iterations of ICE (one sample run).

importance of empathetic preferences for group decision making in organiza-
tions and societies with hierarchical structure.

Number of Iterations of ICE. We now assess the efficiency of our iterative
algorithms. We first examine how the self-loop weight α affects the expected
number of iterations required by the ICE algorithm. We fix m = 5, and
vary α. Table 10 shows the average number of iterations for various α, for
both Borda and plurality utilities. In all cases, the number of iterations
is small relative to network size. ICE is quite insensitive to the scoring
rule, and time-to-termination declines dramatically with increasing α, as is
typical for iterative algorithms (e.g., for Markov chains). Figure 7 illustrates
estimated social welfare for each alternative in one representative run (α =
0.25, Borda scoring): this instance of ICE converges in 24 iterations, with
computation time under 2 ms, despite the large number of voters. Alternative
a4 is eliminated at iteration 16, a5 at 17, a1 at 20, and a2 at 24, leaving a3 as
optimal. Note that the relative order of the alternatives is unchanged after 6
iterations, suggesting that early termination may be useful as a robust means
of approximation.
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α 0.05 0.1 0.25 0.5 0.75

Borda 219.4 101.1 33.6 12.9 6.1
Plurality 208.1 94.6 31.5 12.1 5.7

Table 11: Avg. number of iterations for WICE, m = 10, n = 1000, varying α, 2500 runs.
m 5 10 20 50 100 200 500 1000

Borda 1.592 1.737 1.882 1.817 1.829 2.316 2.715 2.574
Plurality 1.691 1.923 1.930 1.957 2.227 3.105 4.209 4.330

Table 12: The ratio of the average of running time for ICE over the average of running
time for WICE (2500 common instances), m = 10, n = 1000, varying m.

Number of Iterations of WICE. We examine how the self-loop weight α
affects the expected number of iterations required by the WICE algorithm.
We fix m = 5, and vary α. Table 11 shows the average number of iterations
for various α, for both Borda and plurality utilities. The number of itera-
tions is small relative to network size, but is almost twice that of ICE (see
Table 10). WICE, similar to ICE, is quite insensitive to the scoring rule, and
termination time declines dramatically with increasing α, as expected. These
results demonstrate that our algorithms converge to the optimal decision in
very few iterations. They also show that the less empathy present in the
society, the faster convergence is.

Performance Comparison of ICE vs. WICE. The experiment above
shows that WICE requires a greater number of iterations on average when
compared to ICE. We here examine how the running time of ICE compares
to that of WICE. We fix α = 0.25 and n = 1000 but vary m. Table 12 shows
the ratio of average running time for ICE over the average running time of
WICE (over 2500 common instances). WICE seems to be faster than ICE
despite its greater number of iterations. Given this performance, we suggest
the use of WICE over ICE for applications with relatively large numbers of
alternatives

Empathetic Resource Allocation. We briefly demonstrate the value of
accounting for empathetic utilities in a resource-allocation problem with in-
divisible goods. Utilitarian social-welfare maximization for general resource-
allocation problems with indivisible goods is known to be NP-complete (see
the survey by Chevaleyre et al. [55] for an overview of resource-allocation
for indivisible goods). However, in our experiments we focus on an instance
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of a constrained resource allocation problem which can be solved in poly-
nomial time, since we wish to highlight and understand the importance of
empathetic preferences.

We assume that there are n = 1000 agents and m = 5 distinct alternatives
(or resources). There are qj = n

cm
copies of each alternative available to be

allocated to the agents, where we set constant c = 2 unless otherwise noted.
Furthermore, we assume that each agent’s ranked preferences are drawn from
a Mallows φ-model [56]. This model is characterized by a “modal” reference
ranking σ and a dispersion parameter φ ∈ [0, 1), with the probability of
a ranking r decreasing exponentially with its Kendall-τ distance from σ:
P(r|σ, φ) ∝ φdτ (r,σ). Here, dτ (r, σ) measures the number of pairwise swaps
needed to transform r to σ.

An agent receives utility 1 when it is allocated its top-ranked alterna-
tive, and has zero utility for any other alternative. It is easy to show
that the optimal allocation can be found by taking each alternative aj, and
greedily allocating it to the agents who ranked aj first (until n

cm
copies

have been allocated) in terms of decreasing order of the agent’s societal
weight. In other words, for each alternative aj, we first find the set of agents
Nj = {i ∈ N|ri(aj) = 1} who ranked aj first. We then sort the agents in Nj
based on their societal weights ω in descending order. We start allocating
aj from the top of the sorted list until quota qj is exhausted. After iterating
over all alternatives, we arbitrarily assign the remaining alternatives to un-
matched agents (because plurality scoring is used, agents are indifferent to
items below their first-ranked item). Note that there are generally many pos-
sible optimal solutions given the distribution of rankings, quotas, and societal
weights. Given that societal weights are pre-computed, this algorithm can
be run in O(n log n) time by: first sorting individuals based on their societal
weights; then iterating over the sorted list to match each individual to her
most preferred item if its corresponding quota has not yet been exhausted,
and to leave her unmatched otherwise; and finally going over unmatched
individuals to match them with arbitrary available alternatives.

We define relative social welfare loss (RSWL) in a similar fashion to the
voting scenario above:

RSWL =
sw t(xt)− sw t(xa)

sw t(xt)
,

where sw t(·) and swa(·) are social welfare under the true and assumed models,
respectively, and xt and xa are the corresponding optimal allocations.

35



Figure 8 demonstrates the average RSWL (over 2500 instances) for three
“true vs. assumed” models as we increase φ. RSWL seems to be high for both
“global vs. non-empathetic” and “local vs. non-empathetic” but it is very
low for “local vs. global”. RSWL decreases with φ, meaning that the more
homogeneous the set of agents, the higher the relative social welfare loss.
This is partially due to the constraints (i.e., quotas) imposed: when there
are more agents with the same first-rank alternative and limited capacity,
the allocation mechanisms are required to consider societal weights (due to
empathy) more seriously in their allocations.11

We also examine the effect of resource scarcity on RSWL. We set φ = 0.8
and vary c. The higher c is, the greater the scarcity of resources. Figure 9
shows the average RSWL (over 2500 instances) for various c. RSWL increases
with c, suggesting that with higher scarcity, the allocation mechanism should
be more cautious in assigning the resources to individuals. The general goal
should be to first satisfy individuals with the higher empathetic influence
(i.e., higher societal weights).

Iterative Weight Computation for Resource Allocation Finally, we
examine the performance/accuracy of the weight updating scheme presented
in Equation 17 in this resource-allocation setting. We assume that the true
model is the global empathetic model. After each iteration, we treat the es-
timated weights at that iteration as an assumed model and compute RSWL
using those weights relative to the optimal (converged) global model. This
process allows us to monitor how RSWL evolves over iterations of our updat-
ing scheme. For this experiment, we set c = 2 and φ = 0.8 while varying m.
Table 13 shows average RSWL (over 2500 instances) for various m over 10
iterations. Average RSWL at iteration 0 increases with m. However, after
only 2 iterations, average RSWL is close to zero for all m (with a maximum
of almost 0.02). The average RSWL after 10 iterations (for all m) is 0.0001.

6. Concluding Remarks and Future Work

We have introduced an empathetic social choice framework in which in-
dividuals derive utility based on both their own intrinsic preferences and

11This pattern is not observed for consensus decision making in our experiments. In
contrast, our experiments suggest that homogeneity affects RSWL in the opposite way for
consensus decision making: the higher homogeneity is, the lower RSWL is.
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Figure 8: RSWL for allocation problem, plurality, n=1000, m=5, qj = 100, varying φ,
2500 runs.
m/it. 0 1 2 3 4 5 6 7 8 9 10

5 7.8503 0.2459 0.0135 0.0131 0.0035 0.0045 0.0010 0.0012 0.0003 0.0003 0.0001
10 8.8486 0.2033 0.0179 0.0129 0.0040 0.0034 0.0011 0.0009 0.0003 0.0002 0.0001
20 11.5266 0.2458 0.0193 0.0203 0.0042 0.0038 0.0011 0.0009 0.0003 0.0002 0.0001
40 15.1015 0.3120 0.0187 0.0344 0.0050 0.0068 0.0014 0.0016 0.0004 0.0004 0.0001
80 17.5271 0.3521 0.0171 0.0474 0.0045 0.0092 0.0013 0.0022 0.0004 0.0006 0.0001

Table 13: Average RSWL (estimated weights vs. global) for allocation problems as a func-
tion of the number of iterations: plurality, n=1000, φ = 0.8, qj = n

2m for all j ∈ A. Rows
are indexed by m (number of alternatives. Columns are indexed by iteration number.

empathetic preferences determined by the satisfaction of their neighbors in
a social network. Using a social network to structure the degree of empa-
thy that one agent has for another, our proposed algorithms—in both the
local and global empathetic settings—allow efficient computation of optimal
decisions by weighting the contribution of each agent, and have a natural in-
terpretation as empathetic voting when scoring rules are used. Critically, in-
dividuals need only specify their intrinsic preferences (and network weights):
they need not reason explicitly about the preferences of others.

We analyzed the theoretical conditions under which empathetic prefer-
ences are well-defined (i.e., converge to a fixed-point). We described conditions—
normalization, non-negativity, and positive self-loop—under which such fixed
points exist. We demonstrated that group decision making in the empathetic
framework can be recast as a form of weighted social-welfare maximization.
Furthermore we developed scalable algorithms for finding social welfare max-
imizing outcomes, taking into account the empathetic preferences of agents.
We empirically demonstrated the value of accounting for empathetic prefer-
ences and the performance of our algorithms. Our theoretical and empirical
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Figure 9: RSWL for allocation problem, plurality, n = 1000, m = 5, φ = 0.8, qj = 200
c for

all j ∈ A , varying c, 2500 runs.

results shed light on how individual preferences become correlated due to the
presence of empathy. The results also confirmed that neglecting empathetic
preferences yields sub-optimal group decisions.

Our empathetic model is a starting point for the broader investigation of
empathetic preferences. One can explore more realistic processes for simulta-
neous generation of networks and preferences that better explain preference
correlation (see, e.g., the ranking network framework [45]). Methods to assess
the prevalence of empathetic preferences, the extent to which social network
structure reflects such preferences, and how they can be discovered effec-
tively, are critical. Testing our model, and these extensions, on large data
sets is, of course, important for validating the existence of empathy of this
form. There are some scientifically interesting questions that one can ex-
plore in this regard. For example, to what extent and for which contexts do
empathetic preferences exist in social networks? How do empathetic prefer-
ences change with the strength of social ties (e.g., are empathetic preferences
stronger between couples or siblings than between classmates)?

Although our empathetic social choice framework can accommodate other
social choice problems (such as assignment problems or multi-winner elec-
tions), each of these applications requires its own algorithmic developments.
Of special interest is exploiting our empathetic framework for multi-winner
elections. Examples of multi-winner elections with empathetic preferences
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are prevalent in real-world: when a city council decides to implement, say,
two of a number of proposals for the use of vacant land, or when a social
networking site decides to implement, say, three new functionalities selected
from a slate of multiple potential new features.

As with any utility-based method, interpersonal comparison of utilities in
our empathetic framework might be problematic. Although this issue can be
(partially) addressed by using qualitative preferences (e.g., rankings) com-
bined with scoring rules, an important direction is the development of ranking
empathetic frameworks where agents specify tradeoffs between intrinsic and
empathetic preference in a qualitative fashion. One can generalize our empa-
thetic social choice framework by considering scenarios in which individuals
repeatedly update their own preference rankings by aggregating their own
and their neighbors’ preferences (any aggregation mechanism is applicable
as long as it minimizes some notion of distance between aggregated pref-
erence and local preference profiles). This local aggregation process might
capture various psychological dynamics on social networks including empa-
thy, confrontation, influence, imitation, etc.12 Nonetheless, we believe that
local aggregation lies at heart of each of these phenomena, since all involves
an individual’s preferences becoming more similar to those of (a subset of)
their neighbors over time. As such, it is essential to study local aggrega-
tion by abstracting away other minor differences. Under this framework, one
can study ranking preference formation and its interplay with social network
structure. Of special interest is how social structure impacts the formation of
correlated preference rankings on social networks, when preferences converge,
and how community structures can help diversify converged preferences.
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Appendix A. Linear Algebra Background

In this section we provide some key definitions and results from linear
algebra that are used in the proofs for this paper.

Definition (Spectrum σ(A)). The set of eigenvalues of an n × n matrix
A is called its spectrum σ(A).

Definition (Spectral Radius ρ(A)). Let A be an n× n matrix with real
or complex eigenvalues σ(A). Then the spectral radius of A is

ρ(A) = max
λ∈σ(A)

|λ|

.

Definition (M-matrix). A matrix A in the form of A = sI − B is an
M-matrix if s ≥ ρ(B) and B ≥ 0.

Proposition A1 (Nonsingular M-matrix [59]). If s > ρ(B) in an M-
matrix A = sI−B, then A is nonsingular and A−1 ≥ 0
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Note that an M-matrix can be either singular or nonsingular. Therefore,
the condition s > ρ(B) in Proposition A1 is necessary to guarantee the
nonsingularity of an M-matrix.13

Theorem A2 (Gerschgorin Circles [59]). The eigenvalues of matrix A ∈
Cn×n are contained in ∪ni=1Gi, where Gi is the Gerschgorin circle defined by:

Gi =
{
c ∈ C

∣∣|c− aii| ≤ Ri

}
where Ri =

∑
1≤j≤n
j 6=i

|aij|

We exploit induced matrix norms in our analysis of convergence rate of
our iterative method for fixed-point utilities. For a given vector norm ‖.‖,
the induced norm for n×m matrix A ∈ Cn×m is:

‖A‖ = max {‖Ax‖ : x ∈ Cm and ‖x‖ = 1}

= max

{‖Ax‖
‖x‖ : x ∈ Cm and x 6= 0

}
We here focus on the p-norm ‖.‖p which is induced by the p-norm in

vector spaces. More precisely, the p-norm of matrix A is

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

where the p-norm ‖x‖p of vector x ∈ Cn is:

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

p-norms have several important properties: (1) they are submultiplicative:
‖AB‖p ≤ ‖A‖p‖B‖p. A consequence of this consistency property is that, for
any square matrix A, ‖Ak‖p ≤ ‖A‖kp. (2) By definition, they are compatible:
‖Ax‖p ≤ ‖A‖p‖x‖p where A ∈ Cn×m and x ∈ Cm.

13In some references (e.g., [59]), an M-matrix is defined with s > ρ(B). By this defini-
tion, an M-matrix is nonsingular.
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For the cases where p = 1 or p =∞, the matrix p-norm can be computed
easily. The 1-norm for matrix A is simply the maximum absolute column
sum of A:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij| (A.1)

The ∞-norm for matrix A is simply the maximum absolute row sum of A:

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij|. (A.2)

We review the Jacobi iterative method and its convergence criteria and
rate. Iterative methods offer practical advantages for solving linear systems
[51]. A linear system is formally defined as follows: Given an n×n real-valued
matrix A and a real n-vector b, the problem is to find n-vector x ∈ Rn such
that Ax = b.

The Jacobi method [51] is an iterative method for solving linear systems.
Consider this decomposition A = Λ−E−F where Λ is the diagonal matrix of
A, E is the strictly lower triangular matrix of −A, and F is the strictly upper
triangular matrix of −A. Note that we assume that the diagonal entries of A
are all non-zero (this corresponds to our positive self-loop assumption below).
Each iteration of the Jacobi method takes the form of:

x(t+1) = Λ−1(E + F)x(t) + Λ−1b (A.3)

Theorem A3 (Convergence of Iterative Methods [51]). Let an iterative
method take the form of xt+1 = Gxt + f where G is an n × n iteration
matrix and f is an n-vector. It converges if and only if ρ(G) < 1.

Corollary A1 (Jacobi Convergence). The Jacobi iterative method converges
to the solution of linear system Ax = b if ρ(G) < 1 where G = Λ−1(E+F).

Proof The proof of convergence is trivial and immediately follows form the
Theorem A3 by letting G = Λ−1(E + F) and f = Λ−1b. Now, we prove that
the Jacobi method converges to the solution of the linear system. Since it
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converges, let x∗ = limt→∞ x(t). From Equation A.3, we have:

lim
t→∞

x(t+1) = lim
t→∞

Λ−1(E + F)x(t) + Λ−1b

=⇒ lim
t→∞

x(t+1) = Λ−1(E + F)
(

lim
t→∞

x(t)
)

+ Λ−1b

=⇒ x∗ = Λ−1(E + F)x∗ + Λ−1b

=⇒ Λx∗ = (E + F)x∗ + b

=⇒ (Λ− E− F)x∗ = b

=⇒ Ax∗ = b

So x∗ is the solution of the linear system.

Appendix B. Proofs

Appendix B.1. Proof of Proposition 3.1

In this section we provide the proof for Proposition 3.1 and Corollary 3.1.
Recall that if we are given a weighted graph G = (N , E) then the adjacency
matrix is W = [wij] and D is the corresponding diagonal matrix where
djj = wjj.

Lemma B1. Given G = (N , E) with weight matrix W, if non-negativity
holds, W is normalized and agents have positive self-loops, then ρ(B) < 1
where B = W −D.

Proof By the definition of W and D, it can be seen that B = W − D is
a matrix with bii = 0 and bij = wij for all i, j ∈ N and i 6= j. Using the
Gerschgorin Circle Theorem (Theorem A2), we have σ(B) ⊂ ∪ni=1Gi where

Gi =
{
c ∈ C

∣∣|c− bii| ≤ Ri

}
and Ri =

∑
1≤j≤n
j 6=i

|bij|.

As bii = 0 and bij = wij for i 6= j, we have:

Gi =
{
c ∈ C

∣∣|c| ≤ Ri

}
where Ri =

∑
1≤j≤n
j 6=i

|wij|.

Note that each Gi is a closed disk in C which is centered at 0. So ∪ni=1Gi is
the union of closed disks of various radii but the same center 0. Since the
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number of these disks is finite, we can cover all these closed disks with a
closed covering disk defined by

{
c ∈ C

∣∣|c| ≤ Rmax

}
where Rmax = maxni=1Ri.

Without loss of generality, let l = arg maxiRi. So, we have

σ(B) ⊂ ∪ni=1

{
c ∈ C

∣∣|c| ≤ Ri

}
=
{
c ∈ C

∣∣|c| ≤ Rl

}
From this, it follows that:

|λ| ≤ Rl, ∀λ ∈ σ(B) =⇒ max
λ∈σ(B)

|λ| ≤ Rl =⇒ ρ(B) ≤ Rl.

Using Rl =
∑

j 6=l |wlj| and the normalization assumption
∑

j wlj = 1, we
have ρ(B) ≤ 1 − wll. Since wll > 0 by self-loop positivity, we have ρ(B) ≤
1− wll < 1.

We now restate Proposition 3.1.

Proposition 3.1. Given G = (N , E) with weight matrix W, if non-negativity
holds, W is normalized and agents have positive self-loops, then there is a
unique solution to

u(a) = (W −D)u(a) + DuI(a).

In particular,
u(a) = (I−W + D)−1DuI(a).

Proof Using Equation 8, we can write:

u(a) = (W −D)u(a) + DuI(a)

=⇒ u(a)− (W −D)u(a) = DuI(a)

=⇒ (I− (W −D))u(a) = DuI(a)

So it is sufficient to show that (I− (W −D))−1 exists to prove that u(a) =
(I−W+D)−1Du(a) exists and is unique. We need to show that I−(W−D)
is nonsingular to guarantee the existence of (I− (W −D))−1.

Let B = W −D. By definitions of W and D, the matrix B has bii = 0
and bij = wij for all i, j ∈ N and i 6= j. By the non-negativity assumption,
we have wij ≥ 0, so B ≥ 0. By setting s = 1, (I−(W−D)) = (sI−B) which
is an M-matrix. Using Lemma B1, we have ρ(B) < 1. Since s = 1, then
ρ(B) < s. By Proposition A1, it follows that (I − (W −D)) is nonsingular
and (I− (W −D))−1 ≥ 0.
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Figure B.10: The social network of our counter example for demonstrating that the em-
pathetic model is not subsumed by the metric labeling model.

Corollary 3.1. Given G = (N , E) with weight matrix W, the (global) social
welfare of alternative a is given by

swg(u, a) = ωTg uI (B.1)

where
ωTg = eT (I−W + D)−1D.

Proof From the definition of social welfare and Proposition 3.1, it follows

sw g(a,u
I) = e>(I−W + D)−1DuI(a).

By setting ω>g = e>(I−W + D)−1D, we have sw g(a,u
I) = ω>g uI .

Appendix B.2. Proof of Proposition3.2

Proposition 3.2. The empathetic model is not subsumed by the metric la-
beling model.

Proof By a counter example, we show that the empathetic model is not
subsumed by the metric labeling model.

First, we note that Equation 12 can be written as:

ui(x) = wiiu
I
i (x

i) + β0
∑
j

wij − β1
∑
j

wijd(xi, xj).

Now consider the simple social network depicted in Figure B.10. We
assume there are two items a and b and the set of feasible allocations is
A = (a, a), (a, b), (b, a), (b, b). Let agents 1 and 2 have the following intrinsic
utilities over a and b: uI1(a) = 1, uI2(a) = 0, uI1(b) = 0, uI2(b) = 1. We now
focus on agent 1’s overall utility u1(.|x2 = b) assuming agent 2 is assigned to
item b (i.e., x2 = b).

Let uL1 (.|x2 = b) be the overall utility of individual 1 given x2 = b under
the labeling framework. Then, we have uL1 (x1|x2 = b) = 0.25 × uI(x1) +
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0.75β0 − 0.75 × β1d(x1, b). Given this, uL1 (a|x2 = b) = 0.25 + 0.75β0 −
0.75β1 × d(a, b). Similarly, uL1 (b|x2 = b) = 0.75β0 − 0.75β1 × d(b, b). As
d(b, b) = 0 for a valid distance function due to identity of indiscernibles, we
have uL1 (b|x2 = b) = 0.75β0.

Let uE1 (.|x2 = b) be the overall utility of individual 1 given x2 = b under
empathetic framework. Then we have uE1 (a|x2 = b) = 0.25× uI1(a) + 0.75×
uE2 (b|x2 = b). As uE2 (b|x2 = b) = 1.0 × uI2(b) and given the intrinsic utilities
above, we have uE1 (a|x2 = b) = 0.25× 1 + 0.75× 1 = 1. Similarly, uE1 (b|x2 =
b) = 0.75.

We need only check whether there are valid values for β0, β1 and d(., .)
which map the empathetic model to the labeling model. By letting uL1 (b|x2 =
b) = uE1 (b|x2 = b), we have β0 = 1. Letting uL1 (a|x2 = b) = uE1 (a|x2 = b)
and β0 = 1, we have 1 − 0.75β1d(a, b) = 1, thus d(a, b) = 0 or β1 = 0.
However, β1 > 0 by assumption and d(a, b) cannot be zero for a valid distance
function. As a consequence, the empathetic model is not subsumed by the
metric labeling model.

Appendix B.3. Proofs of Results from Section 4.2.1

Theorem 4.1. Given graph G = (N , E) with weight matrix W, alternative
set A and intrinsic utilities uI , consider the following iteration:

u(t+1)(a) = (W −D)u(t)(a) + DuI(a). (B.2)

Assuming non-negativity, normalization, and positive self-loop, this method
converges to u(a), the solution to Equation 8.

Proof of Theorem 4.1 From Equation 8, we observe that u(a) is the solu-
tion of the linear system Au(a) = b with A = I−(W−D) and b = DuI(a).
The Jacobi method is:

u(a)(t+1) = Λ−1(E + F)u(a)(t) + Λ−1b

Since A = I− (W −D), we have that Λ = I and E + F = W −D. As
b = DuI(a), we have:

u(a)(t+1) = I−1(W −D)u(a)(t) + I−1DuI(a)

=⇒ u(a)(t+1) = (W −D)u(a)(t) + DuI(a)

From Lemma B1, we have ρ(W−D) < 1. Then, using Corollary A1, we
know that u(t+1)(a) = (W −D)u(t)(a) + DuI(a) converges to u(a) which is
the solution to the linear system.
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Theorem 4.2. In the iterative scheme above,∥∥u(a)− u(t)(a)
∥∥
∞ ≤ (1− w̃)t

∥∥u(a)− u(0)(a)
∥∥
∞ ,

where w̃ = min1≤i≤nwii.

Proof of Theorem 4.2 Using Equation 8 and u(t)(a) = (W−D)u(t−1)(a)+
DuI(a), we can write u(a) − u(t)(a) = (W − D)(u(a) − u(t−1)(a)). By
induction on t, we have u(a) − u(t)(a) = (W −D)t

(
u(a)− u(0)(a)

)
. Thus,

we have ∥∥u(a)− u(t)(a)
∥∥
∞ =

∥∥(W −D)t
(
u(a)− u(0)(a)

)∥∥
∞

≤
∥∥(W −D)t

∥∥
∞

∥∥u(a)− u(0)(a)
∥∥
∞ (by compatibility)

≤ ‖W −D‖t∞
∥∥u(a)− u(0)(a)

∥∥
∞ (by consistency)

=

(
max
1≤i≤n

n∑
j=1

|wij − dij|
)t ∥∥u(a)− u(0)(a)

∥∥
∞ (∞-norm)

=

max
1≤i≤n

n∑
j=1
j 6=i

|wij|


t ∥∥u(a)− u(0)(a)

∥∥
∞ (by defn. of D)

=

max
1≤i≤n

n∑
j=1
j 6=i

wij


t ∥∥u(a)− u(0)(a)

∥∥
∞ (by non-negativity)

=

(
1− min

1≤i≤n
wii

)t ∥∥u(a)− u(0)(a)
∥∥
∞ (by normalization)

Letting w̃ = min1≤i≤nwii, we have shown that∥∥u(a)− u(t)(a)
∥∥
∞ ≤ (1− w̃)t

∥∥u(a)− u(0)(a)
∥∥
∞ .

Lemma B2. Assume non-negativity and normalization, consider the iter-
ative updating scheme: u(t)(a) = (W − D)u(t−1)(a) + DuI(a). If ∀i ∈ N ,

uIi (a) ∈ [c, d] and u
(0)
i (a) ∈ [c, d], then ui(a)(t) ∈ [c, d], ∀i ∈ N and ∀t ∈ N.

Moreover, we have ui(a) ∈ [c, d], ∀i ∈ N .
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Proof We first prove the first part of the lemma by induction on t. The
base case is t = 0 for which it is given that u

(0)
i (a) ∈ [c, d], ∀i ∈ N . The

induction hypothesis is that u
(t)
i (a) ∈ [c, d] for all ∀i ∈ N . There are two

useful inequalities which follow immediately from the induction hypothesis:
maxi∈N u

(t)
i (a) ≤ d and mini∈N u

(t)
i (a) ≥ c. We can write the updating

scheme for each individual i ∈ N and the alternative a ∈ A as follows:

u
(t+1)
i (a) = wiiu

I
i (a) +

∑
k 6=i

wiku
(t)
k (a) (B.3)

where u
(t)
i (a) denotes the utility of individual i for alternative a after t itera-

tions. Using this equation and the two inequalities mentioned above, we will
first show the upper bound on d and then the lower bound on c for u

(t+1)
i (a),

∀i ∈ N , and fixed a. For the upper bound, we can write the following:

u
(t+1)
i (a) ≤max

j∈N

{
u
(t+1)
j (a)

}
= max

j∈N

{
wjju

I
j (a) +

∑
k 6=j

wjku
(t)
k (a)

}
≤wjj max

j∈N

{
uIj (a)

}
+
∑
k 6=j

wjk max
j∈N

{
u
(t)
k (a)

}
≤wjjd+

∑
k 6=j

wjkd = d
∑
k

wjk = d.

Similarly, for the lower bound:

u
(t+1)
i (a) ≥min

j∈N

{
u
(t+1)
j (a)

}
= min

j∈N

{
wjju

I
j (a) +

∑
k 6=j

wjku
(t)
k (a)

}
≥wjj min

j∈N

{
uIj (a)

}
+
∑
k 6=j

wjk min
j∈N

{
u
(t)
k (a)

}
≥wjjc+

∑
k 6=j

wikc = c
∑
k

wjk = c.

So we have shown that c ≤ u
(t+1)
i (a) ≤ d, ∀i ∈ N and a ∈ A, so proving the

first part of the lemma.
Now, we will prove the second part of lemma by showing that ui(a) ∈

[c, d], ∀i ∈ N and a ∈ A. Fix an arbitrary i ∈ N . The sequence u
(t)
i (a)
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with t = 0, 1, 2, . . . is a convergent sequence which converges to ui(a) =

limt→∞u
(t)
i (a) (based on Theorem 4.1). Note that, from the first part of this

lemma, we have u
(t)
i (a) ∈ [c, d] for any t ∈ N ∪ {0}. So we can see u

(t)
i (a)

is a convergent sequence on the closed set [c, d]. As [c, d] is closed, the limit

point of u
(t)
i (a) sequence which is ui(a) must belong to [c, d]. As i and a are

chosen arbitrarily, we have ui(a) ∈ [c, d].

Theorem 4.3. Assume uIj (a), u
(0)
j (a) ∈ [c, d], for all j. Then∣∣sw(a)− sw (t)(a)
∣∣ ≤ n(d− c) (1− w̃)t ,

for all t, under the conditions above, where w̃ = min1≤i≤nwii.

Proof of Theorem 4.3 Let w̃ = min1≤i≤nwii. Using Theorem 4.2, we can
write ∥∥u(a)− u(t)(a)

∥∥
∞ ≤ (1− w̃)t

∥∥u(a)− u(0)(a)
∥∥
∞ =⇒∣∣∣ui(a)− u(t)i (a)

∣∣∣ ≤ max
i

∣∣∣ui(a)− u(t)i (a)
∣∣∣

≤ (1− w̃)t
∥∥u(a)− u(0)(a)

∥∥
∞ =⇒

n∑
i=1

∣∣∣ui(a)− u(t)i (a)
∣∣∣ ≤ n (1− w̃)t

∥∥u(a)− u(0)(a)
∥∥
∞ . (B.4)

By Lemma B2, we know that ui(a) ∈ [c, d]. Based on this and the assumption

that u
(0)
i (a) ∈ [c, d] , it follows that |ui(a)−u(0)i (a)| ≤ d−c. So we can continue

Inequality (B.4) as follows:
n∑
i=1

∣∣ui(a)− u(t)(a)
∣∣ ≤ n (1− w̃)t

∥∥u(a)− u(0)(a)
∥∥
∞

≤ n(d− c) (1− w̃)t . (B.5)

By Lemma B2, we know that ui(a) ∈ [c, d] and u
(t)
i (a) ∈ [c, d], ∀t ∈ N ∪ {0}.

By the triangle inequality, we have:

n∑
i=1

∣∣∣ui(a)− u(t)i (a)
∣∣∣ ≥ ∣∣∣∣∣

n∑
i=1

(
ui(a)− u(t)i (a)

)∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

ui(a)−
n∑
i=1

u
(t)
i (a)

∣∣∣∣∣
=
∣∣sw(a)− sw (t)(a)

∣∣ . (B.6)
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By Inequalities (B.5) and (B.6), we conclude that∣∣sw(a)− sw (t)(a)
∣∣ ≤ n(d− c) (1− w̃)t ,

where w̃ = min1≤i≤nwii.

Proposition 4.4. If sw (t)(b) − sw (t)(a) ≥ 2n(d − c) (1− w̃)t then sw(b) >
sw(a).

Proof of Proposition 4.4 Using the triangle inequality and the inequality
presented in Theorem 4.3, we can write:

sw (t)(b)− sw (t)(a)

= sw (t)(b)− sw(b) + sw(b)− sw (t)(a) + sw(a)− sw(a)

≤ |sw (t)(b)− sw(b)|+ sw(b) + |sw(a)− sw (t)(a)| − sw(a)

≤ n(d− c)(1− w̃)t + sw(b) + n(d− c)(1− w̃)t − sw(a)

= 2n(d− c)(1− w̃)t + sw(b)− sw(a).

Using this and sw (t)(b) − sw (t)(a) ≥ 2n(d − c)(1 − w̃)t, we have 2n(d −
c)(1− w̃)t ≤ 2n(d− c)(1− w̃)t + sw(b)− sw(a). This implies sw(b) ≥ sw(a).

Appendix B.4. Proofs of Results from Section 4.2.2

Theorem 4.5. ωg is the unique solution to the linear system of Aωg = e
where A = (I−W> + D)D−1.

Proof of Theorem 4.5 The proof is trivial. From Corollary 3.1, we have

ω>g = e>(I−W + D)−1D

=⇒ ωg = D>
(
(I−W + D)−1

)>
e

=⇒ ωg = D
(
(I−W + D)>

)−1
e

=⇒ ωg = D(I> −W> + D>)−1e

=⇒ ωg = D(I−W> + D)−1e

=⇒ (I−W> + D)D−1ωg = e

Let A = (I−W>+D)D−1, so we have the linear system of Aωg = e with the
solution of ωg. For uniqueness of ωg, we need to show that (I−W>+D)D−1
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is a nonsingular matrix. Based on positive self-loop assumption, D and its
inverse D−1 must be nonsingular. In the proof of Proposition 3.1, we showed
that (I−W+D) is nonsingular. As the transpose of any nonsingular matrix
is nonsingular, (I−W + D)> = (I−W> + D) is nonsingular.

Lemma B3. Assuming B = W − D and G = D(W> − D)D−1, then
ρ(G) = ρ(B)

Proof of Lemma B3 By showing that both G and B have the same char-
acteristic polynomial (i.e., pB(λ) = pG(λ)), we demonstrate that σ(G) =
σ(B), thus yielding to ρ(B) = ρ(G) based on the definition. We first note
that G = DB>D−1 and det(D) 6= 0 (due to positive self-loop assumption).
Then, using the definition of pB(λ) and transpose, multiplication and inverse
properties of determinants, we have:

pB(λ) =det(B− λI) = det
(
(B− λI)>

)
= det(B> − λI)

=
det(D)

det(D)
det(B> − λI) = det(D)det(B> − λI)det(D−1)

=det(D(B> − λI)D−1) = det(DB>D−1 −DλD−1)

=det(G− λI) = pG(λ)

Thus, σ(G) = σ(B) and consequently ρ(G) = ρ(B).

Theorem 4.6. Consider the following update:

ω(t+1) = D(W> −D)D−1ω(t) + De

Assuming non-negativity, normalization, and positive self-loop, this method
converges to ω, the solution to linear system stated in Theorem 4.5.

Proof of Theorem 4.6 From Theorem 4.5, we observe that ω is the unique
solution of the linear system of Aω = e where A = (I−W>+ D)D−1. The
Jacobi method (as presented in Equation A.3) for solving this linear system
is

ω(t+1) = Λ−1(E + F)ω(t) + Λ−1e.

Since A = (I−W>+ D)D−1 = D−1− (W>−D)D−1, we have Λ = D−1

and E + F = (W> − D)D−1 based on the definitions, thus yielding the
iteration:

ω(t+1) = D(W> −D)D−1ω(t) + De.
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From Lemma B1 and Lemma B3, we have ρ(G) < 1 where G = D(W>−
D)D−1. Then, using Corollary A1, we have shown that ω(t+1) = D(W> −
D)D−1ω(t) + De converges to ω which is the solution to the linear system
of Aω = e where A = (I−W> + D)D−1.

Lemma B4. If ω is the solution to the linear system in Theorem 4.5 and
ω

′
= (w11, w22, . . . , wnn)> then ω ≥ ω

′
.

Proof of Lemma B4 We first show that ω ≥ 0. As Corollary 3.1 demon-
strates that ω> = e>(I−W+D)−1D and D is a non-negative matrix (due to
the non-negativity assumption). It is sufficient to show that (I−W+D)−1 ≥
0. We can see that I−W + D = I− (W −D) is in the form of M-matrix.
As ρ(W −D) < 1 (See Lemma B1), by applying Proposition A1, we have
(I−W + D)−1 ≥ 0 and consequently ω ≥ 0.

Theorem 4.6 implies that the ω is the fixed-point of the iterative process
of ω(t+1) = D(W> −D)D−1ω(t) + De. So using this and De = ω

′
, we have

ω = D(W> −D)D−1ω + ω
′
. As W>, D, D−1 and ω> are non-negative,

ω ≥ 0 =⇒ D(W> −D)D−1ω ≥ 0 =⇒ D(W> −D)D−1ω + ω
′ ≥ ω

′

=⇒ ω ≥ ω
′
.

Lemma B5. Assuming non-negativity, normalization and positive self-loop,
ω in the global model always satisfies e>ω = n or equivalently

∑
i ωi = n.

Proof of Lemma B5 We first note that e>W> = e> as a consequence of
normalization assumption and also e>I = e>. Then, from Theorem 4.5, we
can write

(I−W> + D)D−1ω = e =⇒ e>(I−W> + D)D−1ω = e>e

=⇒ (e>I− e>W> + e>D)D−1ω = n =⇒ (e> − e> + e>D)D−1ω = n

=⇒ e>DD−1ω = n =⇒ e>Iω = n =⇒ e>ω = n

Theorem 4.7. Assume ω(0) = (w11, w22, . . . , wnn)>. In the iterative scheme
above, ∥∥ω − ω(t)

∥∥
1
≤ n

ŵ

w̃
(1− w̃)t (1− w̄),

where w̃ = min1≤j≤nwjj, ŵ = max1≤j≤nwjj, and w̄ = 1
n

∑
j wjj.
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Proof of Theorem 4.7 From ω(t) = D(W> −D)D−1ω(t−1) + De, we can
write ω − ω(t) = D(W> −D)D−1(ω − ω(t−1)). By induction on t, we can

show that ω−ω(t) = D
(
W> −D

)t
D−1(ω−ω(0)). Using this, we can write∥∥ω − ω(t)

∥∥
1

=
∥∥∥D (W> −D

)t
D−1(ω − ω(0))

∥∥∥
1

≤ ‖D‖1
∥∥∥(W> −D

)t∥∥∥
1

∥∥D−1∥∥
1

∥∥ω − ω(0)
∥∥
1

≤ ‖D‖1
∥∥W> −D

∥∥t
1

∥∥D−1∥∥
1

∥∥ω − ω(0)
∥∥
1

=

(
max
j

∑
i

|dij|
)(

max
j

∑
i

|wji − dij|
)t(

max
j

∑
i

∣∣∣∣ 1

dij

∣∣∣∣
)∥∥ω − ω(0)

∥∥
1

=

(
max
j
|wjj|

)(
max
j

∑
i 6=j

|wji|
)t(

max
j

∣∣∣∣ 1

wjj

∣∣∣∣) ∥∥ω − ω(0)
∥∥
1

=

(
max
j
wjj

)(
max
j

∑
i 6=j

wji

)t(
1

minj wjj

)∥∥ω − ω(0)
∥∥
1

=

(
max
j
wjj

)(
1−min

j
wjj

)t(
1

minj wjj

)∥∥ω − ω(0)
∥∥
1

=

(
maxj wjj
minj wjj

)(
1−min

j
wjj

)t(∑
j

|ωj − wjj|
)

=

(
maxj wjj
minj wjj

)(
1−min

j
wjj

)t(∑
j

(ωj − wjj)
)

Lemma B4

=

(
maxj wjj
minj wjj

)(
1−min

j
wjj

)t(
n−

∑
j

wjj

)
Lemma B5

= n

(
maxj wjj
minj wjj

)(
1−min

j
wjj

)t(
1− 1

n

∑
j

wjj

)

Let w̃ = min1≤j≤nwjj, ŵ = max1≤j≤nwjj, and w̄ = 1
n

∑
j wjj. Thus,

∥∥ω − ω(t)
∥∥
1
≤ n

ŵ

w̃
(1− w̃)t (1− w̄).
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Theorem 4.8. Assume ω(0) = (w11, w22, . . . , wnn)>. Under normalization,
non-negativity, and positive self-loop, for any t:

|sw(a)− sw (t)(a)| ≤ n
ŵ

w̃
(1− w̃)t (1− w̄)

∥∥uI(a)
∥∥
2
,

where w̃ = min1≤j≤nwjj, ŵ = max1≤j≤nwjj, and w̄ = 1
n

∑
j wjj.

Proof of Theorem 4.8 For sw (t)(a) and sw(a), using the Cauchy-Schwarz
inequality, we can write:

|sw(a)− sw (t)(a)| = |ω>uI(a)− (ω(t))>uI(a)|
= |(ω − ω(t))>uI(a)| ≤

∥∥ω − ω(t)
∥∥
2

∥∥uI(a)
∥∥
2

In general, for a given vector x, ‖x‖2 ≤ ‖x‖1. Thus, we here have |sw(a) −
sw (t)(a)| ≤

∥∥ω − ω(t)
∥∥
1

∥∥uI(a)
∥∥
2
. By applying Theorem 4.7, we have:

|sw(a)− sw (t)(a)| ≤
∥∥ω − ω(t)

∥∥
1

∥∥uI(a)
∥∥
2
≤ n

ŵ

w̃
(1− w̃)t (1− w̄)

∥∥uI(a)
∥∥
2

where w̃ = min1≤j≤nwjj, ŵ = max1≤j≤nwjj, and w̄ = 1
n

∑
j wjj. Thus, we

have shown

|sw(a)− sw (t)(a)| ≤ n
ŵ

w̃
(1− w̃)t (1− w̄)

∥∥uI(a)
∥∥
2
.

Proposition 4.9. If sw (t)(a)−sw (t)(b) ≥ n ŵ
w̃

(1− w̃)t (1−w̄)
(∥∥uI(a)

∥∥
2

+
∥∥uI(b)∥∥

2

)
then sw(a) > sw(b).

Proof of Proposition 4.9 Using the inequality presented in Theorem 4.8,
we can write:

sw (t)(a)− sw (t)(b) = sw (t)(a)− sw(a) + sw(a)− sw (t)(b) + sw(b)− sw(b)

≤ |sw (t)(a)− sw(a)|+ sw(a) + |sw(b)− sw (t)(b)| − sw(b)

≤ n
ŵ

w̃
(1− w̃)t (1− w̄)

∥∥uI(a)
∥∥
2

+ sw(a)

+ n
ŵ

w̃
(1− w̃)t (1− w̄)

∥∥uI(b)∥∥
2
− sw(b)

= n
ŵ

w̃
(1− w̃)t (1− w̄)

(∥∥uI(a)
∥∥
2

+
∥∥uI(b)∥∥

2

)
+ sw(a)− sw(b)

Using this and sw (t)(a)−sw (t)(b) ≥ n ŵ
w̃

(1− w̃)t (1−w̄)
(∥∥uI(a)

∥∥
2

+
∥∥uI(b)∥∥

2

)
,

we have sw(a) ≥ sw(b).
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